Skip to main content

Advertisement

Log in

HIV Promotes Neurocognitive Impairment by Damaging the Hippocampal Microvessels

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Current evidence suggests that mild cerebrovascular changes could induce neurodegeneration and contribute to HIV-associated neurocognitive disease (HAND) in HIV patients. We investigated both the quantitative and qualitative impact of HIV infection on brain microvessels, especially on hippocampal microvessels, which are crucial for optimal O2 supply, and thus for maintaining memory and cognitive abilities. The results obtained using cultured human brain microvascular endothelial cells (HBMEC) were reproduced using a suitable mouse model and autopsied human HIV hippocampus. In HBMEC, we found significantly higher oxidative stress-dependent apoptotic cell loss following 5 h of treatment of GST-Tat (1 µg/ml) compared to GST (1 µg/ml) control. We noticed complete recovery of HBMEC cells after 24 h of GST-Tat treatment, due to temporal degradation or inactivation of GST-Tat. Interestingly, we found a sustained increase in mitochondrial oxidative DNA damage marker 8-OHdG, as well as an increase in hypoxia-inducible factor hypoxia-inducible factor-1α (HIF-1α). In our mouse studies, upon short-term injection of GST-Tat, we found the loss of small microvessels (mostly capillaries) and vascular endothelial growth factor (VEGF), but not large microvessels (arterioles and venules) in the hippocampus. In addition to capillary loss, in the post-mortem HIV-infected human hippocampus, we observed large microvessels with increased wall cells and perivascular tissue degeneration. Together, our data show a crucial role of Tat in inducing HIF-1α-dependent inhibition of mitochondrial transcriptional factor A (TFAM) and dilated perivascular space. Thus, our results further define the underlying molecular mechanism promoting mild cerebrovascular disease, neuropathy, and HAND pathogenesis in HIV patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

The datasets generated from this study is included in this manuscript and are also available from the corresponding author on reasonable request.

References

  1. Clifford DBBM (2013) Ances, HIV-associated neurocognitive disorder. Lancet Infect Dis 13(11):976–986

    Article  PubMed  PubMed Central  Google Scholar 

  2. Anand AR, Rachel GD (2018) Parthasarathy HIV proteins and endothelial dysfunction implications in cardiovascular disease. Front Cardiovasc Med 5:185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Barnes RP, Lacson JC, Bahrami H (2017) HIV infection and risk of cardiovascular diseases beyond coronary artery disease. Curr Atheroscler Rep 19(5):20

    Article  PubMed  PubMed Central  Google Scholar 

  4. Cysique LABJ (2019) Brew, Vascular cognitive impairment and HIV-associated neurocognitive disorder: a new paradigm. J Neurovirol 25(5):710–721

    Article  PubMed  Google Scholar 

  5. Ovbiagele BA (2011) Nath, Increasing incidence of ischemic stroke in patients with HIV infection. Neurology 76(5):444–450

    Article  PubMed  PubMed Central  Google Scholar 

  6. Di Napoli MIM (2011) Shah, Neuroinflammation and cerebrovascular disease in old age: a translational medicine perspective. J Aging Res 2011:857484

    Article  PubMed  PubMed Central  Google Scholar 

  7. Masia M et al (2019) Evolving understanding of cardiovascular, cerebrovascular and peripheral arterial disease in people living with HIV and role of novel biomarkers A study of the Spanish CoRIS cohort, 2004–2015. PLoS One 14(4):e0215507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dobbs MRJR (2009) Berger, Stroke in HIV infection and AIDS. Expert Rev Cardiovasc Ther 7(10):1263–1271

    Article  PubMed  Google Scholar 

  9. Sen S et al (2012) Recent developments regarding human immunodeficiency virus infection and stroke. Cerebrovasc Dis 33(3):209–218

    Article  CAS  PubMed  Google Scholar 

  10. Silva JN et al (2014) Chronic central nervous system expression of HIV-1 Tat leads to accelerated rarefaction of neocortical capillaries and loss of red blood cell velocity heterogeneity. Microcirculation 21(7):664–676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Antonios TF (2006) Microvascular rarefaction in hypertension–reversal or over-correction by treatment? Am J Hypertens 19(5):484–485

    Article  PubMed  Google Scholar 

  12. Boudier HA (1999) Arteriolar and capillary remodelling in hypertension. Drugs 58(Spec No 1):37–40

    PubMed  Google Scholar 

  13. Brown WRCR (2011) Thore, Review: cerebral microvascular pathology in ageing and neurodegeneration. Neuropathol Appl Neurobiol 37(1):56–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Troen AM et al (2008) B-vitamin deficiency causes hyperhomocysteinemia and vascular cognitive impairment in mice. Proc Natl Acad Sci U S A 105(34):12474–12479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Attems JKA (2014) Jellinger, The overlap between vascular disease and Alzheimer’s disease–lessons from pathology. BMC Med 12:206

    Article  PubMed  PubMed Central  Google Scholar 

  16. Arvanitakis Z et al (2011) Microinfarct pathology, dementia, and cognitive systems. Stroke 42(3):722–727

    Article  PubMed  PubMed Central  Google Scholar 

  17. Hill LK et al (2020) Detection of cerebrovascular loss in the normal aging C57BL/6 mouse brain using in vivo contrast-enhanced magnetic resonance angiography. Front Aging Neurosci 12:585218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Paradise M et al (2021) Association of dilated perivascular spaces with cognitive decline and incident dementia. Neurology 96(11):e1501–e1511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Smeijer D, Ikram MK, Hilal S (2019) Enlarged perivascular spaces and dementia: a systematic review. J Alzheimers Dis 72(1):247–256

    Article  PubMed  PubMed Central  Google Scholar 

  20. Castelo JM et al (2006) Altered hippocampal-prefrontal activation in HIV patients during episodic memory encoding. Neurology 66(11):1688–1695

    Article  CAS  PubMed  Google Scholar 

  21. Kelschenbach J et al (2019) Efficient expression of HIV in immunocompetent mouse brain reveals a novel nonneurotoxic viral function in hippocampal synaptodendritic injury and memory impairment. mBio 10:4

    Article  Google Scholar 

  22. Johnson AC, Miller JE, Cipolla MJ (2020) Memory impairment in spontaneously hypertensive rats is associated with hippocampal hypoperfusion and hippocampal vascular dysfunction. J Cereb Blood Flow Metab 40(4):845–859

    Article  CAS  PubMed  Google Scholar 

  23. Hokello J et al (2021) Human immunodeficiency virus type-1 (HIV-1) transcriptional regulation, latency and therapy in the central nervous system. Vaccines (Basel) 9:11

    Google Scholar 

  24. Karn J (1999) Tackling Tat. J Mol Biol 293(2):235–254

    Article  CAS  PubMed  Google Scholar 

  25. Marzio G et al (1998) HIV-1 tat transactivator recruits p300 and CREB-binding protein histone acetyltransferases to the viral promoter. Proc Natl Acad Sci U S A 95(23):13519–13524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Peterlin BMDH (2006) Price, Controlling the elongation phase of transcription with P-TEFb. Mol Cell 23(3):297–305

    Article  CAS  PubMed  Google Scholar 

  27. Rice ACH (2003) Herrmann, Regulation of TAK/P-TEFb in CD4+ T lymphocytes and macrophages. Curr HIV Res 1(4):395–404

    Article  CAS  PubMed  Google Scholar 

  28. Mediouni S et al (2012) Antiretroviral therapy does not block the secretion of the human immunodeficiency virus tat protein. Infect Disord Drug Targets 12(1):81–86

    Article  CAS  PubMed  Google Scholar 

  29. Poggi A et al (2004) Migration of V delta 1 and V delta 2 T cells in response to CXCR3 and CXCR4 ligands in healthy donors and HIV-1-infected patients: competition by HIV-1 Tat. Blood 103(6):2205–2213

    Article  CAS  PubMed  Google Scholar 

  30. Silhol M et al (2002) Different mechanisms for cellular internalization of the HIV-1 Tat-derived cell penetrating peptide and recombinant proteins fused to Tat. Eur J Biochem 269(2):494–501

    Article  CAS  PubMed  Google Scholar 

  31. Tyagi M et al (2001) Internalization of HIV-1 tat requires cell surface heparan sulfate proteoglycans. J Biol Chem 276(5):3254–3261

    Article  CAS  PubMed  Google Scholar 

  32. Barillari G et al (1993) The Tat protein of human immunodeficiency virus type 1, a growth factor for AIDS Kaposi sarcoma and cytokine-activated vascular cells, induces adhesion of the same cell types by using integrin receptors recognizing the RGD amino acid sequence. Proc Natl Acad Sci U S A 90(17):7941–7945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bertrand L, Cho HJ, Toborek M (2019) Blood-brain barrier pericytes as a target for HIV-1 infection. Brain 142(3):502–511

    Article  PubMed  PubMed Central  Google Scholar 

  34. Leibrand CR et al (2017) HIV-1 Tat disrupts blood-brain barrier integrity and increases phagocytic perivascular macrophages and microglia in the dorsal striatum of transgenic mice. Neurosci Lett 640:136–143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Albini A et al (1996) The angiogenesis induced by HIV-1 tat protein is mediated by the Flk-1/KDR receptor on vascular endothelial cells. Nat Med 2(12):1371–1375

    Article  CAS  PubMed  Google Scholar 

  36. Nyagol J et al (2008) HIV-1 Tat mimetic of VEGF correlates with increased microvessels density in AIDS-related diffuse large B-cell and Burkitt lymphomas. J Hematop 1(1):3–10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Rusnati MM (2002) Presta, HIV-1 Tat protein and endothelium: from protein/cell interaction to AIDS-associated pathologies. Angiogenesis 5(3):141–151

    Article  CAS  PubMed  Google Scholar 

  38. Sanchez-Alavez M et al (2000) HIV- and FIV-derived gp120 alter spatial memory, LTP, and sleep in rats. Neurobiol Dis 7(4):384–394

    Article  CAS  PubMed  Google Scholar 

  39. Tang H et al (2009) Curcumin improves spatial memory impairment induced by human immunodeficiency virus type 1 glycoprotein 120 V3 loop peptide in rats. Life Sci 85(1–2):1–10

    Article  CAS  PubMed  Google Scholar 

  40. Kim S, Lee M, Choi YK (2020) The role of a neurovascular signaling pathway involving hypoxia-inducible factor and notch in the function of the central nervous system. Biomol Ther (Seoul) 28(1):45–57

    Article  Google Scholar 

  41. Wu LY, He YL, Zhu LL (2018) Possible role of PHD inhibitors as hypoxia-mimicking agents in the maintenance of neural stem cells’ self-renewal properties. Front Cell Dev Biol 6:169

    Article  PubMed  PubMed Central  Google Scholar 

  42. Yeo EJ (2019) Hypoxia and aging. Exp Mol Med 51(6):1–15

    CAS  PubMed  Google Scholar 

  43. Piret JP et al (2002) Is HIF-1alpha a pro- or an anti-apoptotic protein? Biochem Pharmacol 64(5–6):889–892

    Article  CAS  PubMed  Google Scholar 

  44. Ji Y et al (2014) Upregulated autocrine vascular endothelial growth factor (VEGF)/VEGF receptor-2 loop prevents apoptosis in haemangioma-derived endothelial cells. Br J Dermatol 170(1):78–86

    Article  CAS  PubMed  Google Scholar 

  45. Masoumi Moghaddam S et al (2012) Significance of vascular endothelial growth factor in growth and peritoneal dissemination of ovarian cancer. Cancer Metastasis Rev 31(1–2):143–162

    Article  CAS  PubMed  Google Scholar 

  46. Nicolau Y et al (2018) SiRNA silencing of VEGF, IGFs, and their receptors in human retinal microvascular endothelial cells. Am J Transl Res 10(7):1990–2003

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Antic DJD (1998) Keene, Messenger ribonucleoprotein complexes containing human ELAV proteins: interactions with cytoskeleton and translational apparatus. J Cell Sci 111(Pt 2):183–197

    Article  CAS  PubMed  Google Scholar 

  48. Pascale A et al (2005) Neuronal ELAV proteins enhance mRNA stability by a PKCalpha-dependent pathway. Proc Natl Acad Sci U S A 102(34):12065–12070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Quattrone A et al (2001) Posttranscriptional regulation of gene expression in learning by the neuronal ELAV-like mRNA-stabilizing proteins. Proc Natl Acad Sci U S A 98(20):11668–11673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Arcondeguy T et al (2013) VEGF-A mRNA processing, stability and translation: a paradigm for intricate regulation of gene expression at the post-transcriptional level. Nucleic Acids Res 41(17):7997–8010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Chamboredon S et al (2011) Hypoxia-inducible factor-1alpha mRNA: a new target for destabilization by tristetraprolin in endothelial cells. Mol Biol Cell 22(18):3366–3378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Chaudhuri L et al (2012) Preferential selection of MnSOD transcripts in proliferating normal and cancer cells. Oncogene 31(10):1207–1216

    Article  CAS  PubMed  Google Scholar 

  53. King PH (2000) RNA-binding analyses of HuC and HuD with the VEGF and c-myc 3′-untranslated regions using a novel ELISA-based assay. Nucleic Acids Res 28(7):E20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Rahat MA, Bitterman H, Lahat N (2011) Molecular mechanisms regulating macrophage response to hypoxia. Front Immunol 2:45

    Article  PubMed  PubMed Central  Google Scholar 

  55. Wang W et al (2001) Loss of HuR is linked to reduced expression of proliferative genes during replicative senescence. Mol Cell Biol 21(17):5889–5898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. O’Shea A et al (2016) Cognitive aging and the hippocampus in older adults. Front Aging Neurosci 8:298

    Article  PubMed  PubMed Central  Google Scholar 

  57. Cotto B, Natarajanseenivasan K, Langford D (2019) HIV-1 infection alters energy metabolism in the brain: contributions to HIV-associated neurocognitive disorders. Prog Neurobiol 181:101616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wilhelm I et al (2016) Heterogeneity of the blood-brain barrier. Tissue Barriers 4(1):e1143544

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Sen A et al (2016) Protein kinase C (PKC) promotes synaptogenesis through membrane accumulation of the postsynaptic density protein PSD-95. J Biol Chem 291(32):16462–16476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zielonka JB (2010) Kalyanaraman, Hydroethidine- and MitoSOX-derived red fluorescence is not a reliable indicator of intracellular superoxide formation: another inconvenient truth. Free Radic Biol Med 48(8):983–1001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Sen A, Nelson TJ, Alkon DL (2015) ApoE4 and Aβ oligomers reduce BDNF expression via HDAC nuclear translocation. J Neurosci 35(19):7538–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. World Medical, A. (2013) World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA 310(20):2191–2194

    Article  CAS  Google Scholar 

  63. Kasai H (1997) Analysis of a form of oxidative DNA damage, 8-hydroxy-2′-deoxyguanosine, as a marker of cellular oxidative stress during carcinogenesis. Mutat Res 387(3):147–163

    Article  CAS  PubMed  Google Scholar 

  64. Zille M et al (2019) The impact of endothelial cell death in the brain and its role after stroke: A systematic review. Cell Stress 3(11):330–347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Heikal L et al (2018) Assessment of HIF-1alpha expression and release following endothelial injury in-vitro and in-vivo. Mol Med 24(1):22

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Holmes K et al (2007) Vascular endothelial growth factor receptor-2: structure, function, intracellular signalling and therapeutic inhibition. Cell Signal 19(10):2003–2012

    Article  CAS  PubMed  Google Scholar 

  67. Zhou Y et al (2013) Reactive oxygen species in vascular formation and development. Oxid Med Cell Longev 2013:374963

    PubMed  PubMed Central  Google Scholar 

  68. Mebratu YY (2009) Tesfaigzi, How ERK1/2 activation controls cell proliferation and cell death: is subcellular localization the answer? Cell Cycle 8(8):1168–1175

    Article  CAS  PubMed  Google Scholar 

  69. Amadio M et al (2012) Protein kinase C activation affects, via the mRNA-binding Hu-antigen R/ELAV protein, vascular endothelial growth factor expression in a pericytic/endothelial coculture model. Mol Vis 18:2153–2164

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Rask-Madsen C, King GL (2008) Differential regulation of VEGF signaling by PKC-alpha and PKC-epsilon in endothelial cells. Arterioscler Thromb Vasc Biol 28(5):919–924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Muller FL, Liu Y, VanRemmen H (2004) Complex III releases superoxide to both sides of the inner mitochondrial membrane. J Biol Chem 279(47):49064–73

    Article  CAS  PubMed  Google Scholar 

  72. Liu G et al (2012) High-resolution imaging of microvasculature in human skin in-vivo with optical coherence tomography. Opt Express 20(7):7694–7705

    Article  PubMed  PubMed Central  Google Scholar 

  73. Lillenes MS et al (2016) Altered DNA base excision repair profile in brain tissue and blood in Alzheimer’s disease. Mol Brain 9(1):61

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Santos RX et al (2013) Mitochondrial DNA oxidative damage and repair in aging and Alzheimer’s disease. Antioxid Redox Signal 18(18):2444–2457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Dinh QN et al (2014) Roles of inflammation, oxidative stress, and vascular dysfunction in hypertension. Biomed Res Int 2014:406960

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Fan YGY (2007) Yang, Therapeutic angiogenesis for brain ischemia: a brief review. J Neuroimmune Pharmacol 2(3):284–289

    Article  PubMed  Google Scholar 

  77. Su H et al (2008) Development of a cerebral microvascular dysplasia model in rodents. Acta Neurochir Suppl 105:185–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Desai BS et al (2009) Evidence of angiogenic vessels in Alzheimer’s disease. J Neural Transm (Vienna) 116(5):587–597

    Article  CAS  Google Scholar 

  79. Kemper T et al (1999) Microinfarction as a result of hypertension in a primate model of cerebrovascular disease. Acta Neuropathol 98(3):295–303

    Article  CAS  PubMed  Google Scholar 

  80. Riddle DR, Sonntag WE, Lichtenwalner RJ (2003) Microvascular plasticity in aging. Ageing Res Rev 2(2):149–68

    Article  PubMed  Google Scholar 

  81. Toda N (2012) Age-related changes in endothelial function and blood flow regulation. Pharmacol Ther 133(2):159–176

    Article  CAS  PubMed  Google Scholar 

  82. Ungvari Z et al (2018) Endothelial dysfunction and angiogenesis impairment in the ageing vasculature. Nat Rev Cardiol 15(9):555–565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Lu Z et al (2010) PGC-1 alpha regulates expression of myocardial mitochondrial antioxidants and myocardial oxidative stress after chronic systolic overload. Antioxid Redox Signal 13(7):1011–1022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Baudino TA et al (2002) c-Myc is essential for vasculogenesis and angiogenesis during development and tumor progression. Genes Dev 16(19):2530–2543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Florea V et al (2013) c-Myc is essential to prevent endothelial pro-inflammatory senescent phenotype. PLoS ONE 8(9):e73146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Hongpaisan J et al (2013) PKC activation during training restores mushroom spine synapses and memory in the aged rat. Neurobiol Dis 55:44–62

    Article  CAS  PubMed  Google Scholar 

  87. Otsuka H et al (2019) Emerging evidence of translational control by AU-rich element-binding proteins. Front Genet 10:332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Sen A et al (2018) Loss in PKC epsilon causes downregulation of MnSOD and BDNF expression in neurons of Alzheimer’s disease hippocampus. J Alzheimers Dis 63(3):1173–1189

    Article  CAS  PubMed  Google Scholar 

  89. Bereiter-Hahn J (2014) Do we age because we have mitochondria? Protoplasma 251(1):3–23

    Article  CAS  PubMed  Google Scholar 

  90. Lee HCYH (2012) Wei, Mitochondria and aging. Adv Exp Med Biol 942:311–327

    Article  CAS  PubMed  Google Scholar 

  91. Ma R et al (2016) HIV Tat-mediated induction of human brain microvascular endothelial cell apoptosis involves endoplasmic reticulum stress and mitochondrial dysfunction. Mol Neurobiol 53(1):132–142

    Article  CAS  PubMed  Google Scholar 

  92. Tian DY et al (2017) Notch signaling in endothelial cells: is it the therapeutic target for vascular neointimal hyperplasia? Int J Mol Sci 18:8

    Google Scholar 

  93. Zhu M et al (2014) L-cystathionine inhibits the mitochondria-mediated macrophage apoptosis induced by oxidized low density lipoprotein. Int J Mol Sci 15(12):23059–23073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Forsythe JA et al (1996) Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol Cell Biol 16(9):4604–4613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Moulignier A et al (2018) Silent cerebral small-vessel disease is twice as prevalent in middle-aged individuals with well-controlled, combination antiretroviral therapy-treated human immunodeficiency virus (HIV) than in HIV-uninfected individuals. Clin Infect Dis 66(11):1762–1769

    Article  PubMed  Google Scholar 

  96. Su T et al (2017) Cerebral blood flow and cognitive function in HIV-infected men with sustained suppressed viremia on combination antiretroviral therapy. AIDS 31(6):847–856

    Article  PubMed  Google Scholar 

  97. Kalaria RNY (2019) Hase, Neurovascular ageing and age-related diseases. Subcell Biochem 91:477–499

    Article  CAS  PubMed  Google Scholar 

  98. Cioni C (2002) Annunziata, Circulating gp120 alters the blood-brain barrier permeability in HIV-1 gp120 transgenic mice. Neurosci Lett 330(3):299–301

    Article  CAS  PubMed  Google Scholar 

  99. Picca AAM (2015) Lezza, Regulation of mitochondrial biogenesis through TFAM-mitochondrial DNA interactions: useful insights from aging and calorie restriction studies. Mitochondrion 25:67–75

    Article  CAS  PubMed  Google Scholar 

  100. Liao K et al (2020) HIV Tat-mediated induction of autophagy regulates the disruption of ZO-1 in brain endothelial cells. Tissue Barriers 8(2):1748983

    Article  PubMed  PubMed Central  Google Scholar 

  101. Louboutin J, Strayer DS (2012) Blood-brain barrier abnormalities caused by HIV-1 gp120: mechanistic and therapeutic implications. ScientificWorldJournal 2012:482575

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Pu H et al (2003) HIV-1 Tat protein upregulates inflammatory mediators and induces monocyte invasion into the brain. Mol Cell Neurosci 24(1):224–237

    Article  CAS  PubMed  Google Scholar 

  103. Dolui S et al (2020) Arterial spin labeling versus (18)F-FDG-PET to identify mild cognitive impairment. Neuroimage Clin 25:102146

    Article  PubMed  Google Scholar 

  104. Verclytte S et al (2016) Cerebral hypoperfusion and hypometabolism detected by arterial spin labeling MRI and FDG-PET in early-onset Alzheimer’s disease. J Neuroimaging 26(2):207–212

    Article  PubMed  Google Scholar 

  105. Narvid J et al (2018) Abnormal cerebral perfusion profile in older adults with HIV-associated neurocognitive disorder: discriminative power of arterial spin-labeling. AJNR Am J Neuroradiol 39(12):2211–2217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Arvanitakis Z et al (2017) The relationship of cerebral vessel pathology to brain microinfarcts. Brain Pathol 27(1):77–85

    Article  CAS  PubMed  Google Scholar 

  107. Kalaria RN (2016) Neuropathological diagnosis of vascular cognitive impairment and vascular dementia with implications for Alzheimer’s disease. Acta Neuropathol 131(5):659–685

    Article  PubMed  PubMed Central  Google Scholar 

  108. Kalaria RN (2012) Cerebrovascular disease and mechanisms of cognitive impairment: evidence from clinicopathological studies in humans. Stroke 43(9):2526–2534

    Article  PubMed  Google Scholar 

  109. Wang X et al (2019) Brain grey-matter volume alteration in adult patients with bipolar disorder under different conditions: a voxel-based meta-analysis. J Psychiatry Neurosci 44(2):89–101

    Article  CAS  PubMed  Google Scholar 

  110. Banerjee G et al (2016) Novel imaging techniques in cerebral small vessel diseases and vascular cognitive impairment. Biochim Biophys Acta 1862(5):926–938

    Article  CAS  PubMed  Google Scholar 

  111. Kalaria RNC (1999) Ballard, Overlap between pathology of Alzheimer disease and vascular dementia. Alzheimer Dis Assoc Disord 13(Suppl 3):S115–S123

    Article  PubMed  Google Scholar 

  112. Kovari E et al (2013) The relationship between cerebral amyloid angiopathy and cortical microinfarcts in brain ageing and Alzheimer’s disease. Neuropathol Appl Neurobiol 39(5):498–509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Schneider JA (2009) High blood pressure and microinfarcts: a link between vascular risk factors, dementia, and clinical Alzheimer’s disease. J Am Geriatr Soc 57(11):2146–2147

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Human tissue specimens were obtained from the NIH NeuroBioBank: University of Maryland Brain and Tissue Bank (A Brain and Tissue Bank Reposition of the NIH NeuroBioBank) and NIH Brain & Tissue Repository-California, Human Brain & Spinal Fluid Resource Center, VA West Los Angeles Medical Center, Los Angeles, California, which is supported in part by National Institutes of Health and the US Department of Veterans Affairs.

Funding

Research reported in this publication was funded by the National Institutes of Health, an R01, R01AG058884, from National Institute on Aging to JH and an R01, R01DA041746, National Institute on Drug Abuse to MT.

Author information

Authors and Affiliations

Authors

Contributions

A.L.S., H.W, Z.Z., G.M., and J.H. performed the experiments; J.H. and M.T. analyzed the data and wrote the first draft of the manuscript; J.H., A.L.S., and M.T. reviewed and edited the manuscript; J.H. and M.T. supervised the project; J.H. and M.T. acquired the funding. All authors read and approved the final version of the manuscript.

Corresponding authors

Correspondence to Mudit Tyagi or Jarin Hongpaisan.

Ethics declarations

Ethical Statement/Informed Consent

The present work was carried out in accordance with the Code of Ethics of the World Medical Association (Declaration of Helsinki) for experiments involving humans. All patients (or relatives/representatives who had the power of attorney) signed informed consent forms.

Consent of Publication

Not applicable.

Consent to Participate

Not applicable.

Conflict of Interest.

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, A.L., Wang, H., Zhang, Z. et al. HIV Promotes Neurocognitive Impairment by Damaging the Hippocampal Microvessels. Mol Neurobiol 59, 4966–4986 (2022). https://doi.org/10.1007/s12035-022-02890-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-022-02890-8

Keywords

Navigation