Skip to main content
Log in

The Putative Drosophila TMEM184B Ortholog Tmep Ensures Proper Locomotion by Restraining Ectopic Firing at the Neuromuscular Junction

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

TMEM184B is a putative seven-pass membrane protein that promotes axon degeneration after injury. TMEM184B mutation causes aberrant neuromuscular architecture and sensory and motor behavioral defects in mice. The mechanism through which TMEM184B causes neuromuscular defects is unknown. We employed Drosophila melanogaster to investigate the function of the closely related gene, Tmep (CG12004), at the neuromuscular junction. We show that Tmep is required for full adult viability and efficient larval locomotion. Tmep mutant larvae have a reduced body contraction rate compared to controls, with stronger deficits in females. In recordings from body wall muscles, Tmep mutants show substantial hyperexcitability, with many postsynaptic potentials fired in response to a single stimulation, consistent with a role for Tmep in restraining synaptic excitability. Additional branches and satellite boutons at Tmep mutant neuromuscular junctions are consistent with an activity-dependent synaptic overgrowth. Tmep is expressed in endosomes and synaptic vesicles within motor neurons, suggesting a possible role in synaptic membrane trafficking. Using RNAi knockdown, we show that Tmep is required in motor neurons for proper larval locomotion and excitability, and that its reduction increases levels of presynaptic calcium. Locomotor defects can be rescued by presynaptic knockdown of endoplasmic reticulum calcium channels or by reducing evoked release probability, further suggesting that excess synaptic activity drives behavioral deficiencies. Our work establishes a critical function for Tmep in the regulation of synaptic transmission and locomotor behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Flies and plasmids created during this study will be available from the authors or deposited at the Bloomington Drosophila Stock Center (BDSC) or at Addgene.

References

  1. Schneggenburger R, Neher E (2005) Presynaptic calcium and control of vesicle fusion. Curr. Opin. Neurobiol. 15:266–274

    Article  CAS  PubMed  Google Scholar 

  2. Kwon SK, Sando R, Lewis TL et al (2016) LKB1 regulates mitochondria-dependent presynaptic calcium clearance and neurotransmitter release properties at excitatory synapses along cortical axons. PLoS Biol 14. https://doi.org/10.1371/journal.pbio.1002516

  3. Brusich DJ, Spring AM, James TD et al (2018) Drosophila CaV2 channels harboring human migraine mutations cause synapse hyperexcitability that can be suppressed by inhibition of a Ca2+store release pathway. PLoS Genet 14. https://doi.org/10.1371/journal.pgen.1007577

  4. Stern M, Ganetzky B (1989) Altered synaptic transmission in drosophila hyperkinetic mutants. J Neurogenet 5:215–228. https://doi.org/10.3109/01677068909066209

    Article  CAS  PubMed  Google Scholar 

  5. Uytterhoeven V, Kuenen S, Kasprowicz J et al (2011) Loss of Skywalker reveals synaptic endosomes as sorting stations for synaptic vesicle proteins. Cell 145:117–132. https://doi.org/10.1016/j.cell.2011.02.039

    Article  CAS  PubMed  Google Scholar 

  6. Fernandes AC, Uytterhoeven V, Kuenen S et al (2014) Reduced synaptic vesicle protein degradation at lysosomes curbs TBC1D24/sky-induced neurodegeneration. J Cell Biol 207:453–462. https://doi.org/10.1083/JCB.201406026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Fischer B, Lüthy K, Paesmans J et al (2016) Skywalker-TBC1D24 has a lipid-binding pocket mutated in epilepsy and required for synaptic function. Nat Struct Mol Biol 23:965–973. https://doi.org/10.1038/nsmb.3297

    Article  CAS  PubMed  Google Scholar 

  8. Koh TW, Korolchuk VI, Wairkar YP et al (2007) Eps15 and Dap160 control synaptic vesicle membrane retrieval and synapse development. J Cell Biol 178:309–322. https://doi.org/10.1083/jcb.200701030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Milton VJ, Jarrett HE, Gowers K et al (2011) Oxidative stress induces overgrowth of the Drosophila neuromuscular junction. Proc Natl Acad Sci U S A 108:17521–17526. https://doi.org/10.1073/pnas.1014511108

    Article  PubMed  PubMed Central  Google Scholar 

  10. West RJH, Briggs L, Fjeldstad MP et al (2018) Sphingolipids regulate neuromuscular synapse structure and function in Drosophila. J Comp Neurol 526:1995. https://doi.org/10.1002/CNE.24466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hindle SJ, Hebbar S, Schwudke D et al (2017) A saposin deficiency model in Drosophila: lysosomal storage, progressive neurodegeneration and sensory physiological decline. Neurobiol Dis 98:77–87. https://doi.org/10.1016/j.nbd.2016.11.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Vivas O, Tiscione SA, Dixon RE et al (2019) Niemann-Pick type C disease reveals a link between lysosomal cholesterol and PtdIns(4,5)P2 that regulates neuronal excitability. Cell Rep 27:2636. https://doi.org/10.1016/J.CELREP.2019.04.099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wucherpfennig T, Wilsch-Bräuninger M, González-Gaitán M (2003) Role of Drosophila Rab5 during endosomal trafficking at the synapse and evoked neurotransmitter release. J Cell Biol 161:609–624. https://doi.org/10.1083/jcb.200211087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ackermann F, Schink KO, Bruns C et al (2019) Critical role for piccolo in synaptic vesicle retrieval. Elife 8. https://doi.org/10.7554/eLife.46629

  15. Vazquez-Sanchez S, Gonzalez-Lozano MA, Walfenzao A et al (2020) The endosomal protein sorting nexin 4 is a synaptic protein. Sci Rep 10. https://doi.org/10.1038/s41598-020-74694-6

  16. Li YC, Kavalali ET (2017) Synaptic vesicle-recycling machinery components as potential therapeutic targets. Pharmacol. Rev. 69:141–160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bhattacharya MRC, Geisler S, Pittman SK et al (2016) TMEM184b promotes axon degeneration and neuromuscular junction maintenance. J Neurosci 36:4681–4689. https://doi.org/10.1523/JNEUROSCI.2893-15.2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Larsen EG, Cho TS, McBride ML et al (in press) TMEM184B is necessary for IL-31-induced itch. Pain. https://doi.org/10.1101/2020.01.25.919902

  19. Lee PT, Zirin J, Kanca O et al (2018) A gene-specific T2A-GAL4 library for drosophila. Elife 7:4. https://doi.org/10.7554/eLife.35574

    Article  Google Scholar 

  20. Haberman A, Williamson WR, Epstein D et al (2012) The synaptic vesicle SNARE neuronal synaptobrevin promotes endolysosomal degradation and prevents neurodegeneration. J Cell Biol 196:261–276. https://doi.org/10.1083/jcb.201108088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dickman DK, Lu Z, Meinertzhagen IA, Schwarz TL (2006) Altered synaptic development and active zone spacing in endocytosis mutants. Curr Biol 16:591–598. https://doi.org/10.1016/J.CUB.2006.02.058

    Article  CAS  PubMed  Google Scholar 

  22. Burg MG, Wu C-F (2012) Mechanical and temperature stressors-induced seizure-and-paralysis behaviors in Drosophila bang-sensitive mutants. J Neurogenet 26:189. https://doi.org/10.3109/01677063.2012.690011

    Article  PubMed  PubMed Central  Google Scholar 

  23. Daniels RW, Rossano AJ, Macleod GT, Ganetzky B (2014) Expression of multiple transgenes from a single construct using viral 2A peptides in Drosophila. PLoS One 9:e100637. https://doi.org/10.1371/JOURNAL.PONE.0100637

    Article  PubMed  PubMed Central  Google Scholar 

  24. Simkus CRL, Stricker C (2002) The contribution of intracellular calcium stores to mEPSCs recorded in layer II neurones of rat barrel cortex. J Physiol 545:521–535. https://doi.org/10.1113/JPHYSIOL.2002.022103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wong CO, Chen K, Lin YQ et al (2014) A TRPV channel in drosophila motor neurons regulates presynaptic resting Ca2+ levels, synapse growth, and synaptic transmission. Neuron 84:764–777. https://doi.org/10.1016/j.neuron.2014.09.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. de Juan-Sanz J, Holt GT, Schreiter ER et al (2017) Axonal endoplasmic reticulum Ca2+ content controls release probability in CNS nerve terminals. Neuron 93:867–881.e6. https://doi.org/10.1016/j.neuron.2017.01.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bezprozvanny I, Kavalali ET (2020) Presynaptic endoplasmic reticulum and neurotransmission. Cell Calcium 85:102133. https://doi.org/10.1016/J.CECA.2019.102133

    Article  CAS  PubMed  Google Scholar 

  28. Chanaday NL, Nosyreva E, Shin OH et al (2021) Presynaptic store-operated Ca2+ entry drives excitatory spontaneous neurotransmission and augments endoplasmic reticulum stress. Neuron 109:1314–1332.e5. https://doi.org/10.1016/J.NEURON.2021.02.023

    Article  CAS  PubMed  Google Scholar 

  29. Russo A, Goel P, Brace E et al (2019) The E3 ligase Highwire promotes synaptic transmission by targeting the NAD-synthesizing enzyme dNmnat. EMBO Rep 20:e46975. https://doi.org/10.15252/EMBR.201846975

    Article  PubMed  PubMed Central  Google Scholar 

  30. Mack TGA, Reiner M, Beirowski B et al (2001) Wallerian degeneration of injured axons and synapses is delayed by a Ube4b/Nmnat chimeric gene. Nat Neurosci 4:1199–1206. https://doi.org/10.1038/nn770

    Article  CAS  PubMed  Google Scholar 

  31. Sasaki Y, Vohra BPS, Baloh RH, Milbrandt J (2009) Transgenic mice expressing the nmnatl protein manifest robust delay in axonal degeneration in vivo. J Neurosci 29:6526–6534. https://doi.org/10.1523/JNEUROSCI.1429-09.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sasaki Y, Milbrandt J (2010) Axonal degeneration is blocked by nicotinamide mononucleotide adenylyltransferase (Nmnat) protein transduction into transected axons. J Biol Chem 285:41211–41215. https://doi.org/10.1074/JBC.C110.193904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Fritschy JM (2008) Epilepsy, E/I balance and GABAA receptor plasticity. Front Mol Neurosci 1. https://doi.org/10.3389/neuro.02.005.2008

  34. Bozzi Y, Provenzano G, Casarosa S (2018) Neurobiological bases of autism–epilepsy comorbidity: a focus on excitation/inhibition imbalance. Eur J Neurosci 47:534–548. https://doi.org/10.1111/ejn.13595

    Article  PubMed  Google Scholar 

  35. Liu XM, Yamasaki A, Du XM et al (2018) Lipidation-independent vacuolar functions of atg8 rely on its noncanonical interaction with a vacuole membrane protein. Elife 7:1–21. https://doi.org/10.7554/eLife.41237

    Article  Google Scholar 

  36. He CW, Cui XF, Ma SJ et al (2021) Membrane recruitment of Atg8 by Hfl1 facilitates turnover of vacuolar membrane proteins in yeast cells approaching stationary phase. BMC Biol 19. https://doi.org/10.1186/s12915-021-01048-7

  37. Liu Q, Vain T, Viotti C et al (2018) Vacuole integrity maintained by DUF300 proteins is required for brassinosteroid signaling regulation. Mol Plant 11:553–567. https://doi.org/10.1016/j.molp.2017.12.015

    Article  CAS  PubMed  Google Scholar 

  38. Kittel RJ, Wichmann C, Rasse TM et al (2006) Bruchpilot promotes active zone assembly, Ca2+ channel clustering, and vesicle release. Science 312:1051–1054. https://doi.org/10.1126/SCIENCE.1126308

    Article  CAS  PubMed  Google Scholar 

  39. Wagh DA, Rasse TM, Asan E et al (2006) Bruchpilot, a protein with homology to ELKS/CAST, is required for structural integrity and function of synaptic active zones in Drosophila. Neuron 49:833–844. https://doi.org/10.1016/J.NEURON.2006.02.008

    Article  CAS  PubMed  Google Scholar 

  40. Shakiryanova D, Morimoto T, Zhou C et al (2011) Differential control of presynaptic CaMKII activation and translocation to active zones. J Neurosci 31:9093. https://doi.org/10.1523/JNEUROSCI.0550-11.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Narita K, Akita T, Osanai M et al (1998) A Ca2+-induced Ca2+ release mechanism involved in asynchronous exocytosis at frog motor nerve terminals. J Gen Physiol 112:593–609. https://doi.org/10.1085/JGP.112.5.593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kubota M, Narita K, Murayama T et al (2005) Type-3 ryanodine receptor involved in Ca2+-induced Ca2+ release and transmitter exocytosis at frog motor nerve terminals. Cell Calcium 38:557–567. https://doi.org/10.1016/j.ceca.2005.07.008

    Article  CAS  PubMed  Google Scholar 

  43. Khuzakhmetova V, Samigullin D, Nurullin L et al (2014) Kinetics of neurotransmitter release in neuromuscular synapses of newborn and adult rats. Int J Dev Neurosci 34:9–18. https://doi.org/10.1016/J.IJDEVNEU.2013.12.010

    Article  CAS  PubMed  Google Scholar 

  44. Khuzakhmetova VF, Samigullin DV, Bukharaeva EA (2014) The role of presynaptic ryanodine receptors in regulation of the kinetics of the acetylcholine quantal release in the mouse neuromuscular junction. Biochem Suppl Ser A Membr Cell Biol 81(8):144–152. https://doi.org/10.1134/S199074781305005X

    Article  Google Scholar 

  45. James TD, Zwiefelhofer DJ, Frank CA (2019) Maintenance of homeostatic plasticity at the Drosophila neuromuscular synapse requires continuous IP 3-directed signaling. Elife 8. https://doi.org/10.7554/ELIFE.39643

  46. Kaeser PS, Regehr WG (2014) Molecular mechanisms for synchronous, asynchronous, and spontaneous neurotransmitter release. Annu. Rev. Physiol. 76:333–363

    Article  CAS  PubMed  Google Scholar 

  47. Budnik V, Zhong Y, Wu CF (1990) Morphological plasticity of motor axons in Drosophila mutants with altered excitability. J Neurosci 10:3754–3768. https://doi.org/10.1523/JNEUROSCI.10-11-03754.1990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kuebler D, Zhang H, Ren X, Tanouye MA (2001) Genetic suppression of seizure susceptibility in Drosophila. J Neurophysiol 86:1211–1225. https://doi.org/10.1152/JN.2001.86.3.1211/ASSET/IMAGES/LARGE/9K0911880007.JPEG

    Article  CAS  PubMed  Google Scholar 

  49. Saras A, Tanouye MA (2016) Mutations of the calcium channel gene cacophony suppress seizures in Drosophila. PLOS Genet 12:e1005784. https://doi.org/10.1371/JOURNAL.PGEN.1005784

    Article  PubMed  PubMed Central  Google Scholar 

  50. Wiel C, Lallet-Daher H, Gitenay D et al (2014) Endoplasmic reticulum calcium release through ITPR2 channels leads to mitochondrial calcium accumulation and senescence. Nat Commun 5. https://doi.org/10.1038/ncomms4792

  51. Wong CO, Karagas NE, Jung J et al (2021) Regulation of longevity by depolarization-induced activation of PLC-β-IP3R signaling in neurons. Proc Natl Acad Sci U S A 118:1–9. https://doi.org/10.1073/pnas.2004253118

    Article  CAS  Google Scholar 

  52. Calcraft PJ, Ruas M, Pan Z et al (2009) NAADP mobilizes calcium from acidic organelles through two-pore channels. Nature 459:596–600. https://doi.org/10.1038/NATURE08030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Meyer JO, Dolphin AC (2021) Rab11-dependent recycling of calcium channels is mediated by auxiliary subunit α2δ-1 but not α2δ-3. Sci Rep 11:1–13. https://doi.org/10.1038/s41598-021-89820-1

    Article  CAS  Google Scholar 

  54. Malek M, Wawrzyniak AM, Koch P et al (2021) Inositol triphosphate-triggered calcium release blocks lipid exchange at endoplasmic reticulum-Golgi contact sites. Nat Commun:12. https://doi.org/10.1038/s41467-021-22882-x

  55. Saheki Y, De Camilli P (2017) Endoplasmic reticulum–plasma membrane contact sites. Annu Rev Biochem 86:659–684. https://doi.org/10.1146/annurev-biochem-061516-044932

    Article  CAS  PubMed  Google Scholar 

  56. Davis GW, Schuster CM, Goodman CS (1997) Genetic analysis of the mechanisms controlling target selection: target-derived Fasciclin II regulates the pattern of synapse formation. Neuron 19:561–573. https://doi.org/10.1016/S0896-6273(00)80372-4

    Article  CAS  PubMed  Google Scholar 

  57. West RJH, Lu Y, Marie B et al (2015) Rab8, POSH, and TAK1 regulate synaptic growth in a Drosophila model of frontotemporal dementia. J Cell Biol 208:931–947. https://doi.org/10.1083/jcb.201404066

    Article  PubMed  PubMed Central  Google Scholar 

  58. Feng Y, Ueda A, Wu CF (2004) A modified minimal hemolymph-like solution, HL3.1, for physiological recordings at the neuromuscular junctions of normal and mutant Drosophila larvae. J Neurogenet 18:377–402. https://doi.org/10.1080/01677060490894522

    Article  CAS  PubMed  Google Scholar 

  59. Macleod GT, Marin L, Charlton MP, Atwood HL (2004) Synaptic vesicles: test for a role in presynaptic calcium regulation. J Neurosci 24:2496–2505. https://doi.org/10.1523/JNEUROSCI.5372-03.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Marie B, Sweeney ST, Poskanzer KE et al (2004) Dap160/Intersectin scaffolds the periactive zone to achieve high-fidelity endocytosis and normal synaptic growth. Neuron 43:207–219. https://doi.org/10.1016/j.neuron.2004.07.001

    Article  CAS  PubMed  Google Scholar 

  61. Beumer KJ, Rohrbough J, Prokop A, Broadie K (1999) A role for PS integrins in morphological growth and synaptic function at the postembryonic neuromuscular junction of Drosophila. Development 126:5833–5846. https://doi.org/10.1242/dev.126.24.5833

    Article  CAS  PubMed  Google Scholar 

  62. Torroja L, Packard M, Gorczyca M et al (1999) The Drosophila β-amyloid precursor protein homolog promotes synapse differentiation at the neuromuscular junction. J Neurosci 19:7793–7803. https://doi.org/10.1523/jneurosci.19-18-07793.1999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank all members of the Bhattacharya lab for thoughtful comments on the manuscript. We also thank Dr. Konrad Zinsmaier for sharing his electrophysiology equipment as well as his expertise for our work. We thank Drs. Kimberly Chapman and Seth Berger at Children’s National Medical Center for communicating unpublished information. We thank the York Protein Production Facility, the York Imaging and Cytometry Facility, and the University of Arizona Marley Microscopy Core Facility for their assistance.

Code Availability

All code used in image analysis is deposited on our research group’s GitHub page and is freely available to all (https://github.com/martharcb).

Funding

This work was supported by R01NS105680, a Muscular Dystrophy Association Development grant, and the Arizona Technology and Research Initiative Fund (TRIF) (to M.R.C.B.), the MRC (UK) grant MR/M013596/1 to S.T.S. and a Biotechnology and Biological Sciences Research Council Studentship grant BB/M011151/1 (to S.T.S. and E.B.).

Author information

Authors and Affiliations

Authors

Contributions

S.T.S. and M.R.C.B. proposed the research and assisted in experimental design. T.S.C., E.B., and N.E.K. designed and performed experiments. All three first authors (indicated with *) made significant discoveries leading to this manuscript, resulting in all three being listed as equal first authors. T.S.C. and M.R.C.B. wrote the manuscript, with editing by E.B. and S.T.S.

Corresponding author

Correspondence to Martha R. C. Bhattacharya.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Consent for Publication

All authors have had the opportunity to review this manuscript prior to submission, and all give their approval for publication of this work.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Tiffany S. Cho, Eglė Beigaitė and Nathaniel E. Klein contributed equally to this work.

Supplementary Information

Online Resource 1

Tmep is expressed broadly throughout the larvae. RedStinger:NLS (red and orange) shows nuclei of cells in which endogenous Tmep is expressed. a, Ventral nerve cord. Green is Repo (glial nuclei). b, Neuromuscular junction. Green is discs large (DLG). c, Gut expression. d, Fat body expression. For all figures, scale bars = 20 μm. (PNG 1297 kb)

High resolution image (EPS 50351 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho, T.S., Beigaitė, E., Klein, N.E. et al. The Putative Drosophila TMEM184B Ortholog Tmep Ensures Proper Locomotion by Restraining Ectopic Firing at the Neuromuscular Junction. Mol Neurobiol 59, 2605–2619 (2022). https://doi.org/10.1007/s12035-022-02760-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-022-02760-3

Keywords

Navigation