Skip to main content
Log in

Combination of electroconvulsive stimulation with ketamine or escitalopram protects the brain against inflammation and oxidative stress induced by maternal deprivation and is critical for associated behaviors in male and female rats

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract 

This study aimed at evaluating the treatment effects with ketamine, electroconvulsive stimulation (ECS), escitalopram, alone or in combination in adult rats of both sexes, subjected to the animal model of maternal deprivation (MD). All groups were subjected to the forced swimming test (FST), splash and open field tests. The prefrontal cortex (PFC), hippocampus and serum were collected to analyze oxidative stress and inflammatory parameters. MD induced depressive-like behavior in the FST test in males and reduced grooming time in male and female rats. The treatments alone or combined reversed depressive and anhedonic behavior in females. In males, all treatments increased grooming time, except for ECS + escitalopram + ketamine. MD increased lipid peroxidation and protein carbonylation, nitrite/nitrate concentration and myeloperoxidase activity in the PFC and hippocampus of males and females. However, the treatment’s response was sex dependent. Catalase activity decreased in the PFC of males and the PFC and hippocampus of females, and most treatments were not able to reverse it. MD increased the inflammation biomarkers levels in the PFC and hippocampus of males and females, and most treatments were able to reverse this increase. In all groups, a reduction in the interleukin-10 levels in the PFC and hippocampus of female and male rats was observed. Our study shows different responses between the sexes in the patterns evaluated and reinforces the use of the gender variable as a biological factor in MDD related to early stress and in the response of the therapeutic strategies used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data will be made available on reasonable request.

References

  1. Greenberg PE, Fournier AA, Sisitsky T, Pike CT, Kessler RC (2015) The economic burden of adults with major depressive disorder in the United States (2005 and 2010). J Clin Psychiatry 76:155–162. https://doi.org/10.4088/JCP.14m09298

    Article  PubMed  Google Scholar 

  2. Beurel E, Toups M, Nemeroff CB (2020) The Bidirectional Relationship of Depression and Inflammation: Double Trouble. Neuron 107:234–256. https://doi.org/10.1016/j.neuron.2020.06.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Salk RH, Hyde JS, Abramson LY (2017) Gender differences in depression in representative national samples: Meta-analyses of diagnoses and symptoms. Psychol Bull 143:783–822. https://doi.org/10.1037/bul0000102

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ferrari AJ, Somerville AJ, Baxter AJ, Norman R, Patten SB, Vos R, Whiteford HA (2013) Global variation in the prevalence and incidence of major depressive disorder: a systematic review of the epidemiological literature. Psychol Med 43:471–481. https://doi.org/10.1017/S0033291712001511

    Article  CAS  PubMed  Google Scholar 

  5. Lindqvist D, Dhabhar FS, James SJ, Hough CM, Jain FA, Bersani FS, Reus VI, Verhoeven E et al (2017) Oxidative stress, inflammation and treatment response in major depression. Psychoneuroendocrinol 76:197–205. https://doi.org/10.1016/j.psyneuen.2016.11.031

    Article  CAS  Google Scholar 

  6. Hindmarch I (2002) Beyond the monoamine hypothesis: mechanisms, molecules and methods. Eur Psychiatry 17:294–299. https://doi.org/10.1016/s0924-9338(02)00653-3

    Article  PubMed  Google Scholar 

  7. Heim C, Newport DJ, Mletzko T, Miller AH, Nemeroff CB (2008) The link between childhood trauma and depression: insights from HPA axis studies in humans. Psychoneuroendocrinol 33:693–710. https://doi.org/10.1016/j.psyneuen.2008.03.008

    Article  CAS  Google Scholar 

  8. Nemeroff CB (1999) The preeminent role of early untoward experience on vulnerability to major psychiatric disorders: the nature-nurture controversy revisited and soon to be resolved. Mol Psychiatry 4:106. https://doi.org/10.1038/sj.mp.4000512

    Article  CAS  PubMed  Google Scholar 

  9. Nemeroff CB, Heim CM, Thase ME, Klein DN, Rush AJ, Schatzberg AF, Keller MB (2003) Differential responses to psychotherapy versus pharmacotherapy in patients with chronic forms of major depression and childhood trauma. Proc Natl Acad Sci 100:14293–14296. https://doi.org/10.1073/pnas.2336126100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gold PW (2014) The organization of the stress system and its dysregulation in depressive illness. Mol Psychiatry 20:32. https://doi.org/10.1038/mp.2014.163

    Article  CAS  PubMed  Google Scholar 

  11. Averill LA, Abdallah CG, Fenton LR, Fasula MK, Jiang L, Rothman DL, Mason GF, Sanacora G (2020) Early life stress and glutamate neurotransmission in major depressive disorder. Eur Neuropsychopharmacol 35:71–80. https://doi.org/10.1016/j.euroneuro.2020.03.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Czéh B, Fuchs E, Wiborg O, Simon M (2016) Animal models of major depression and their clinical implications. Prog Neuropsychopharmacol Biol Psychiatry 64:293–310. https://doi.org/10.1016/j.pnpbp.2015.04.004

    Article  PubMed  Google Scholar 

  13. Réus GZ, Abelaira HM, dos Santos MA, Carlessi AS, Tomaz DB, Neotti MV, Liranço JL, Gubert C et al (2013) Ketamine and imipramine in the nucleus accumbens regulate histone deacetylation induced by maternal deprivation and are critical for associated behaviors. Behav Brain Res 256:451–456. https://doi.org/10.1016/j.bbr.2013.08.041

    Article  CAS  PubMed  Google Scholar 

  14. Réus GZ, Carlessi AS, Titus SE, Abelaira HM, Ignácio ZM, da Luz JR, Matias BI, Bruchchen L et al (2015) A single dose of S-ketamine induces long-term antidepressant effects and decreases oxidative stress in adulthood rats following maternal deprivation. Dev Neurobiol 75:1268–1281. https://doi.org/10.1002/dneu.22283

    Article  CAS  PubMed  Google Scholar 

  15. Réus GZ, Silva RH, de Moura AB, Presa JF, Abelaira HM, Abatti M, Vieira A, Pescador B et al (2019) Early Maternal Deprivation Induces Microglial Activation, Alters Glial Fibrillary Acidic Protein Immunoreactivity and Indoleamine 2,3-Dioxygenase during the Development of Offspring Rats. Mol Neurobiol 56:1096–1108. https://doi.org/10.1007/s12035-018-1161-2

    Article  CAS  PubMed  Google Scholar 

  16. Kurutas EB (2016) The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: current state. Nutr J 15:71. https://doi.org/10.1186/s12937-016-0186-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Salim S (2017) Oxidative stress and the central nervous system. J Pharmacol Exp Ther 360:201–205. https://doi.org/10.1124/jpet.116.237503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Joshi YB, Pratico D (2014) Lipid peroxidation in psychiatric illness: overview Q16 of clinical evidence. Oxid Med Cell Longev XX, 828702https://doi.org/10.1155/2014/828702

  19. Che Y, Zhou Z, Shu Y, Zhai C, Zhu Y, Gong S, Cui Y, Wang JF (2015) Chronic unpredictable stress impairs endogenous antioxidant defense in rat brain. Neurosci Lett 584:208–213. https://doi.org/10.1016/j.neulet.2014.10.031

    Article  CAS  PubMed  Google Scholar 

  20. Visentin APV, Colombo R, Scotton E, Fracasso DS, da Rosa AR, Branco CS, Salvador M (2020) Targeting Inflammatory-Mitochondrial Response in Major Depression: Current Evidence and Further Challenges. Oxid Med Cell Longev 2020:2972968. https://doi.org/10.1155/2020/2972968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Schiepers OJ, Wichers MC, Maes M (2005) Cytokines and major depression. Prog Neuropsychopharmacol Biol Psychiatry 29:201–217. https://doi.org/10.1016/j.pnpbp.2004.11.003

    Article  CAS  PubMed  Google Scholar 

  22. Köhler CA, Freitas TH, Maes M, de Andrade NQ, Liu CS, Fernandes BS, Stubbs B, Solmi M et al (2017) Peripheral cytokine and chemokine alterations in depression: a meta-analysis of 82 studies. Acta Psychiatr Scand 135:373–387. https://doi.org/10.1111/acps.12698 (Epub 2017 Jan 25)

    Article  CAS  PubMed  Google Scholar 

  23. Thomas SJ, Shin M, McInnis MG, Bostwick JR (2015) Combination therapy with monoamine oxidase inhibitors and other antidepressants or stimulants: strategies for the management of treatment-resistant depression. Pharmacotherapy 35:433–449. https://doi.org/10.1002/phar.1576

    Article  CAS  PubMed  Google Scholar 

  24. Réus GZ, Fernandes GC, de Moura AB, Silva RH, Darabas AC, de Souza TG, Abelaira HM, Carneiro C et al (2017) Early life experience contributes to the developmental programming of depressive-like behaviour, neuroinflammation and oxidative stress. J Psychiatr Res 95:196–207. https://doi.org/10.1016/j.jpsychires.2017.08.020

    Article  PubMed  Google Scholar 

  25. Olesen MV, Wörtwein G, Folke J, Pakkenberg B (2017) Electroconvulsive stimulation results in long-term survival of newly generated hippocampal neurons in rats. Hippocampus 27:52–60. https://doi.org/10.1002/hipo.22670

    Article  PubMed  Google Scholar 

  26. Dionisie V, Ciobanu AM, Toma VA, Manea MC, Baldea I, Olteanu D, Sevastre-Berghian A, Clichici S et al (2021) Escitalopram Targets Oxidative Stress, Caspase-3, BDNF and MeCP2 in the Hippocampus and Frontal Cortex of a Rat Model of Depression Induced by Chronic Unpredictable Mild Stress. Int J Mol Sci 22(14):7483. https://doi.org/10.3390/ijms22147483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Réus GZ, Stringari RB, Ribeiro KF, Cipriano AL, Panizzutti BS, Stertz L, Lersch C, Kapczinski F et al (2011) Maternal deprivation induces depressive-like behaviour and alters neurotrophin levels in the rat brain. Neurochem Res 36:460–466. https://doi.org/10.1007/s11064-010-0364-3

    Article  CAS  PubMed  Google Scholar 

  28. Isingrini E, Camus V, Le Guisquet AM, Pingaud M, Devers S, Belzung C (2010) Association between repeated unpredictable chronic mild stress (UCMS) procedures with a high fat diet: a model of fluoxetine resistance in mice. PLoS One 5:e10404. https://doi.org/10.1371/journal.pone.0010404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Porsolt RD, Bertin A, Jalfre M (1977) Behavioural despair in mice: a primary screening test for antidepressants. Archive International Pharmacodyn Therapy 229:27–336

    Google Scholar 

  30. Paxinos G, Watson C (1986) The Rat Brain: Stereotaxic Coordinates, 2nd edn. Academic Press, Australia

    Google Scholar 

  31. Esterbauer H (1990) Determination of aldehydic lipid peroxidation products: malonaldehyde and 4-hydroxynonenal. Methods Enzymol 21:186–207. https://doi.org/10.1016/0076-6879(90)86134-h

    Article  Google Scholar 

  32. Levine RL, Garland D, Oliver CN (1990) Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol 186:464–478. https://doi.org/10.1016/0076-6879(90)86141-h

    Article  CAS  PubMed  Google Scholar 

  33. Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR (1982) Analysis of nitrate, nitrite, and [15 N] nitrate in biological fluids. Anal Biochem 126:131–138. https://doi.org/10.1016/0003-2697(82)90118-x

    Article  CAS  PubMed  Google Scholar 

  34. Bannister JV, Calabrese L (1987) Assays for superoxide dismutase. Met Biochem Anal 32:279–312. https://doi.org/10.1002/9780470110539.ch5

    Article  CAS  Google Scholar 

  35. De Young LM, Kheifets JB, Ballaron SJ, Young JM (1989) Edema and cell infiltration in the phorbol ester-treated mouse ear are temporally separate and can be differentially modulated by pharmacologic agents. Agents Actions 126:335–341. https://doi.org/10.1007/BF01967298

    Article  Google Scholar 

  36. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    Article  CAS  Google Scholar 

  37. Goodwill HL, Manzano-Nieves G, Gallo M, Lee HI, Oyerinde E, Serre T, Bath KG (2019) Early life stress leads to sex differences in development of depressive-like outcomes in a mouse model. Neuropsychopharmacol 44:711–720. https://doi.org/10.1038/s41386-018-0195-5

    Article  Google Scholar 

  38. Borba LA, Broseghini LDR, Manosso LM, de Moura AB, Botelho MEM, Arent CO, Behenck JP, Hilsendeger A et al (2021) Environmental enrichment improves lifelong persistent behavioral and epigenetic changes induced by early-life stress. J Psychiatr Res 138:107–116. https://doi.org/10.1016/j.jpsychires.2021.04.008

    Article  PubMed  Google Scholar 

  39. Abelaira HM, Veron DC, de Moura AB, Carlessi AS, Borba LA, Botelho MEMB, Andrade NM, Martinello NS et al (2021) Sex differences on the behavior and oxidative stress after ketamine treatment in adult rats subjected to early life stress. Brain Res Bull S0361–9230:00124–00126. https://doi.org/10.1016/j.brainresbull.2021.04.021

    Article  CAS  Google Scholar 

  40. Thelen C, Sens J, Mauch J, Pandit R, Pitychoutis PM (2016) Repeated ketamine treatment induces sex-specific behavioral and neurochemical effects in mice. Behav Brain Res 312:305–312. https://doi.org/10.1016/j.bbr.2016.06.041

    Article  CAS  PubMed  Google Scholar 

  41. McDougall SA, Park GI, Ramirez GI, Gomez V, Adame BC, Crawford CA (2019) Sex-dependent changes in ketamine-induced locomotor activity and ketamine pharmacokinetics in preweanling, adolescent, and adult rats. Eur Neuropsychopharmacol 29:740–755. https://doi.org/10.1016/j.euroneuro.2019.03.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. McDougall SA, Moran AE, Baum TJ, Apodaca MG, Real V (2017) Effects of ketamine on the unconditioned and conditioned locomotor activity of preadolescent and adolescent rats: impact of age, sex, and drug dose. Psychopharmacol 234:2683–2696. https://doi.org/10.1007/s00213-017-4660-3

    Article  CAS  Google Scholar 

  43. Wilson C, Cone K, Kercher M, Hibbitts J, Fischer J, Van Lake A, Sumner J (2005) Naloxone increases ketamine-induced hyperactivity in the open field in female rats. Pharmacol Biochem Behav 81:530–534. https://doi.org/10.1016/j.pbb.2005.03.018

    Article  CAS  PubMed  Google Scholar 

  44. Wilson C, Kercher M, Quinn B, Murphy A, Fiegel C, McLaurin A (2007) Effects of age and sex on ketamine-induced hyperactivity in rats. Physiol Behav 91:202–207. https://doi.org/10.1016/j.physbeh.2007.02.010

    Article  CAS  PubMed  Google Scholar 

  45. Carrier N, Kabbaj M (2013) Sex differences in the antidepressant-like effects of ketamine. Neuropharmacol 70:27–34. https://doi.org/10.1016/j.neuropharm.2012.12.009

    Article  CAS  Google Scholar 

  46. Franceschelli A, Sens J, Herchick S, Thelen C, Pitychoutis PM (2015) Sex differences in the rapid and the sustained antidepressant-like effects of ketamine in stress-naive and "depressed" mice exposed to chronic mild stress. Neurosci 49-60https://doi.org/10.1016/j.neuroscience.2015.01.008

  47. Frye C, Walf A (2002) Changes in progesterone metabolites in the hippocampus can modulate open field and forced swim test behavior of proestrous rats. Horm Behav 41:306–315. https://doi.org/10.1006/hbeh.2002.1763

    Article  CAS  PubMed  Google Scholar 

  48. Greenhalgh J, Knight C, Hind D, Beverley C, Walters S (2005) Clinical and cost-effectiveness of electroconvulsive therapy for depressive illness, schizophrenia, catatonia and mania: systematic reviews and economic modelling studies. Health Technol Assess 9:1e156.iiieiv. https://doi.org/10.3310/hta9090

    Article  Google Scholar 

  49. Güney P, Ekman CJ, Hammar Å, Heintz E, Landén M, Lundberg J, Nordanskog P, Nordenskjöld A (2020) Electroconvulsive Therapy in Depression: Improvement in Quality of Life Depending on Age and Sex. J ECT 36:242–246. https://doi.org/10.1097/YCT.0000000000000671

    Article  PubMed  PubMed Central  Google Scholar 

  50. Socała K, Nieoczym D, Wyska E, Wlaź P (2017) Effect of sildenafil on the activity of some antidepressant drugs and electroconvulsive shock treatment in the forced swim test in mice. Naunyn Schmiedebergs Arch Pharmacol 390:339–349. https://doi.org/10.1007/s00210-016-1334-3

    Article  CAS  PubMed  Google Scholar 

  51. Khan A, Brodhead AE, Schwartz KA, Kolts RL, Brown WA (2005) Sex differences in antidepressant response in recent antidepressant clinical trials. J Clin Psychopharmacol 25:318–324. https://doi.org/10.1097/01.jcp.0000168879.03169.ce

    Article  PubMed  Google Scholar 

  52. Yalcin I, Aksu F, Belzung C (2005) Effects of desipramine and tramadol in a chronic mild stress model in mice are altered by yohimbine but not by pindolol. Eur J Pharmacol 514:165–174. https://doi.org/10.1016/j.ejphar.2005.03.029

    Article  CAS  PubMed  Google Scholar 

  53. Zhang T, He K, Bai T, Lv H, Xie X, Nie J, Xie W, Zhu C et al (2020) Altered neural activity in the reward-related circuit and executive control network associated with amelioration of anhedonia in major depressive disorder by electroconvulsive therapy. Prog Neuropsychopharmacol Biol Psychiatry 109:110193. https://doi.org/10.1016/j.pnpbp.2020.110193

    Article  PubMed  Google Scholar 

  54. Henningsen K, Woldbye DP, Wiborg O (2013) Electroconvulsive stimulation reverses anhedonia and cognitive impairments in rats exposed to chronic mild stress. Eur Neuropsychopharmacol 23:1789–1794. https://doi.org/10.1016/j.euroneuro.2013.03.011

    Article  CAS  PubMed  Google Scholar 

  55. Burstein O, Franko M, Gale E, Handelsman A, Barak S, Motsan S, Shamir A, Toledano R et al (2017) Escitalopram and NHT normalized stress-induced anhedonia and molecular neuroadaptations in a mouse model of depression. PLoS One 12:e0188043. https://doi.org/10.1371/journal.pone.0188043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Jha MK, Minhajuddin A, Gadad BS, Chin Fatt C, Trivedi MH (2019) Higher S100B Levels Predict Persistently Elevated Anhedonia with Escitalopram Monotherapy Versus Antidepressant Combinations: Findings from CO-MED Trial. Pharmaceuticals (Basel) 12:184. https://doi.org/10.3390/ph12040184

    Article  CAS  Google Scholar 

  57. Gałuszko-Węgielnik M, Wiglusz MS, Słupski J, Szałach Ł, Włodarczk A, Górska N, Szarmach J, Jakuszkowiak-Wojten K et al (2019) Efficacy of Ketamine in bipolar depression: focus on anhedonia. Psychiatr Danub 31:554–560

    PubMed  Google Scholar 

  58. Ballard ED, Wills K, Lally N, Richards EM, Luckenbaugh DA, Walls T, Ameli R, Niciu MJ et al (2017) Anhedonia as a clinical correlate of suicidal thoughts in clinical ketamine trials. J Affect Disord 218:195–200. https://doi.org/10.1016/j.jad.2017.04.057

    Article  PubMed  PubMed Central  Google Scholar 

  59. Lally N, Nugent AC, Luckenbaugh DA, Ameli R, Roiser JP, Zarate CA (2014) Anti-anhedonic effect of ketamine and its neural correlates in treatment-resistant bipolar depression. Transl Psychiatry 4:e469. https://doi.org/10.1038/tp.2014.105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Tenkorang MA, Snyder B, Cunningham RL (2018) Sex-related differences in oxidative stress and neurodegeneration. Steroids 133:21–27. https://doi.org/10.1016/j.steroids.2017.12.010

    Article  CAS  PubMed  Google Scholar 

  61. Wiener C, Rassier GT, Kaster MP, Jansen K, Pinheiro RT, Klamt F, Magalhães PV, Kapczinski F et al (2014) Gender-based differences in oxidative stress parameters do not underlie the differences in mood disorders susceptibility between sexes. Eur Psychiatry 29:58–63. https://doi.org/10.1016/j.eurpsy.2013.05.006

    Article  CAS  PubMed  Google Scholar 

  62. Wright KN, Kabbaj M (2018) Sex differences in sub-anesthetic ketamine’s antidepressant effects and abuse liability. Curr Opin Behav Sci 23:36–41. https://doi.org/10.1016/j.cobeha.2018.02.001

    Article  PubMed  PubMed Central  Google Scholar 

  63. Chen WY, Huang MC, Lin SK (2014) Gender differences in subjective discontinuation symptoms associated with ketamine use. Subst Abuse Treat Prev Policy 9:39. https://doi.org/10.1186/1747-597X-9-39

    Article  PubMed  PubMed Central  Google Scholar 

  64. Neves BH, Menezes J, Souza MA, Mello-Carpes PB (2015) Physical exercise prevents short and long-term deficits on aversive and recognition memory and attenuates brain oxidative damage induced by maternal deprivation. Physiol Behav 152:99–105. https://doi.org/10.1016/j.physbeh.2015.09.019

    Article  CAS  PubMed  Google Scholar 

  65. Réus GZ, Nacif MP, Abelaira HM, Tomaz DB, dos Santos MA, Carlessi AS, da Luz JR, Gonçalves RC et al (2015) Ketamine ameliorates depressive-like behaviors and immune alterations in adult rats following maternal deprivation. Neurosci Lett 584:83–87. https://doi.org/10.1016/j.neulet.2014.10.022

    Article  CAS  PubMed  Google Scholar 

  66. Shalaby A, Kamal S (2009) Effect of Escitalopram on GABA level and anti-oxidant markers in prefrontal cortex and nucleus accumbens of chronic mild stress-exposed albino rats. Int J Physiol Pathophysiol Pharmacol 1:154–161

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Jornada LK, Feier G, Barichello T, Vitali ÂM, Reinke A, Gavioli EC et al (2007) Effects of maintenance electroshock on the oxidative damage parameters in the rat brain. Neurochem Res 32:389–394. https://doi.org/10.1007/s11064-006-9214-8

    Article  CAS  PubMed  Google Scholar 

  68. Barichello T, Bonatto F, Agostinho FR, Reinke A, Moreira JCF, Dal-Pizzol F et al (2004) Structure-related oxidative damage in rat brain after acute and chronic electroshock. Neurochem Res 29:1749–1753. https://doi.org/10.1023/b:nere.0000035811.06277.b3

    Article  CAS  PubMed  Google Scholar 

  69. De Oliveira L, Cecília CM, Bortolin T, Canever L, Petronilho F, Gonçalves Mina F et al (2009) Different sub-anesthetic doses of ketamine increase oxidative stress in the brain of rats. Prog Neuro-Psychopharmacology Biol Psychiatry 33:1003–1008. https://doi.org/10.1016/j.pnpbp.2009.05.010

    Article  CAS  Google Scholar 

  70. Réus GZ, Abaleira HM, Titus SE, Arent CO, Michels M, Da Luz JR et al (2016) Effects of ketamine administration on the phosphorylation levels of CREB and TrKB and on oxidative damage after infusion of MEK inhibitor. Pharmacol Reports 68:177–184. https://doi.org/10.1016/j.pharep.2015.08.010

    Article  CAS  Google Scholar 

  71. Maciel AL, Abelaira HM, de Moura AB, de Souza TG, Rosa T, Matos D, Tuon T, Garbossa L et al (2018) Acute treatment with ketamine and chronic treatment with minocycline exert antidepressant-like effects and antioxidant properties in rats subjected different stressful events. Brain Res Bull 137:204–216. https://doi.org/10.1016/j.brainresbull.2017.12.005

    Article  CAS  PubMed  Google Scholar 

  72. Slamon ND, Pentreath VW (2000) Antioxidant defense against antidepressants in C6 and 1321N1 cells. Chem Biol Interact 127:181–199. https://doi.org/10.1016/s0009-2797(00)00172-1

    Article  CAS  PubMed  Google Scholar 

  73. Liu Y, Lan N, Ren J, Wu Y, Wang ST, Huang XF, Yu Y (2015) Orientin improves depression-like behavior and BDNF in chronic stressed mice. Mol Nutr Food Res 59:1130–1142. https://doi.org/10.1002/mnfr.201400753

    Article  CAS  PubMed  Google Scholar 

  74. Ortmann CF, Réus GZ, Ignácio ZM, Abelaira HM, Titus SE, de Carvalho P, Arent CO, Dos Santos MA et al (2016) Enriched Flavonoid Fraction from Cecropia pachystachya Trécul Leaves Exerts Antidepressant-like Behavior and Protects Brain Against Oxidative Stress in Rats Subjected to Chronic Mild Stress. Neurotox Res 29:469–483. https://doi.org/10.1007/s12640-016-9596-6

    Article  CAS  PubMed  Google Scholar 

  75. Cimen B, Gumus CB, Cetin I, Ozsoy S, Aydin M, Cimen L (2015) The Effects of Escitalopram Treatment on Oxidative/ Antioxidative Parameters in Patients with Depression. Bull of Clin Psychopharmacol 3:272–279

    Article  Google Scholar 

  76. Lv F, Shen YW, Peng LH, Li P, Luo J, Wei K, Li W, Chen J et al (2013) Effects of propofol on expression of hippocampal neuronal nitric oxide synthase and carboxy-terminal PDZ ligand of neuronal nitric oxide synthase in stressed rats undergoing electroconvulsive shock. J ECT 29:297–302. https://doi.org/10.1097/YCT.0b013e318290fa17

    Article  CAS  PubMed  Google Scholar 

  77. Soubhye J, Aldib I, Prévost M, Elfving B, Gelbcke M, Podrecca M, Conotte R, Colet JM et al (2014) Pharm Pharmacol 66:1122–1132. https://doi.org/10.1111/jphp.12236

    Article  CAS  Google Scholar 

  78. Yamamori H, Ishima T, Yasuda Y, Fujimoto M, Kudo N, Ohi K, Hashimoto K, Takeda M et al (2016) Assessment of a multi-assay biological diagnostic test for mood disorders in a Japanese population. Neurosci Lett 612:167–171. https://doi.org/10.1016/j.neulet.2015.12.019

    Article  CAS  PubMed  Google Scholar 

  79. Vaccarino V, Brennan ML, Miller AH, Bremner JD, Ritchie JC, Lindau F, Veledar E, Su S et al (2008) Association of major depressive disorder with serum myeloperoxidase and other markers of inflammation: a twin study. Biol Psychiatry 64:476–483. https://doi.org/10.1016/j.biopsych.2008.04.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kartalci S, Karabulut AB, Erbay LG, Acar C (2016) Effects of Electroconvulsive Therapy on Some Inflammatory Factors in Patients With Treatment-Resistant Schizophrenia. J ECT 32:174–179. https://doi.org/10.1097/YCT.0000000000000303

    Article  CAS  PubMed  Google Scholar 

  81. Abdo SA, Wadie W, Abdelsalam RM, Khattab MM (2019) Potential Anti-Inflammatory Effect of Escitalopram in Iodoacetamide-Induced Colitis in Depressed Ovariectomized Rats: Role of α7-nAChR. Inflammation 42:2056–2064. https://doi.org/10.1007/s10753-019-01068-0

    Article  CAS  PubMed  Google Scholar 

  82. Maes M, Yirmyia R, Noraberg J, Brene S, Hibbeln J, Perini G, Kubera M, Bob P et al (2009) The inflammatory & neurodegenerative (I&ND) hypothesis of depression: leads for future research and new drug developments in depression. Metab Brain Dis 24:27–53. https://doi.org/10.1007/s11011-008-9118-1

    Article  CAS  PubMed  Google Scholar 

  83. Miller AH, Maletic V, Raison CL (2009) Inflammation and its discontents: the role of cytokines in the pathophysiology of major depression. Biol Psychiatry 65:732–741. https://doi.org/10.1016/j.biopsych.2008.11.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ménard C, Pfau ML, Hodes GE, Russo SJ (2017) Immune and neuroendocrine mechanisms of stress vulnerability and resilience. Neuropsychopharmacology 42:62–80. https://doi.org/10.1038/npp.2016.90

    Article  CAS  PubMed  Google Scholar 

  85. Miller AH, Raison CL (2016) The role of inflammation in depression: from evolutionary imperative to modern treatment target. Nat Rev Immunol 16:22–34. https://doi.org/10.1038/nri.2015.5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Bekhbat M, Neigh GN (2018) Sex differences in the neuro-immune consequences of stress: Focus on depression and anxiety. Brain Behav Immun 67:1–12. https://doi.org/10.1016/j.bbi.2017.02.006

    Article  PubMed  Google Scholar 

  87. Klein SL (2016) Flanagan KL. Sex differences in immune responses. Nat rev Immunol 16:626–638. https://doi.org/10.1038/nri.2016.90

    Article  CAS  PubMed  Google Scholar 

  88. Ye Y, Yao S, Wang R, Fang Z, Zhong K, Nie L, Zhang Q (2019) PI3K/Akt/NF-kappaB signaling pathway regulates behaviors in adolescent female rats following with neonatal maternal deprivation and chronic mild stress. Behav Brain Res 362:199–207. https://doi.org/10.1016/j.bbr.2019.01.008

    Article  CAS  PubMed  Google Scholar 

  89. Wang Q, Dong X, Wang Y, Liu M, Sun A, Li N, Lin Y, Geng Z et al (2017) Adolescent escitalopram prevents the effects of maternal separation on depression- and anxiety-like behaviours and regulates the levels of inflammatory cytokines in adult male mice. Int J Dev Neurosci 62:37–45. https://doi.org/10.1016/j.ijdevneu.2017.07.007

    Article  CAS  PubMed  Google Scholar 

  90. Yang C, Hong T, Shen J, Ding J, Dai XW, Zhou ZQ, Yang JJ (2013) Ketamine exerts antidepressant effects and reduces IL-1beta and IL-6 levels in rat prefrontal cortex and hippocampus. Exp Ther Med 5:1093–1096. https://doi.org/10.3892/etm.2013.930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Gonçalves CL, Abelaira HM, Rosa T, de Moura AB, Veron DC, Borba LA, Botelho MEM, Goldim MP et al (2021) Ketamine treatment protects against oxidative damage and the immunological response induced by electroconvulsive therapy. Pharmacol Rep 73:525–535. https://doi.org/10.1007/s43440-020-00200-4

    Article  CAS  PubMed  Google Scholar 

  92. Baumeister D, Akhtar R, Ciufolini S, Pariante CM, Mondelli V (2016) Childhood trauma and adulthood inflammation: a meta-analysis of peripheral C-reactive protein, interleukin-6 and tumour necrosis factor-α. Mol Psychiatry 21:642–649. https://doi.org/10.1038/mp.2015.67

    Article  CAS  PubMed  Google Scholar 

  93. Järventausta K, Sorri A, Kampman O, Björkqvist M, Tuohimaa K, Hämäläinen M et al (2017) Changes in interleukin-6 levels during electroconvulsive therapy may reflect the therapeutic response in major depression. Acta Psychiatr Scand 135:87–92. https://doi.org/10.1111/acps.12665

    Article  CAS  PubMed  Google Scholar 

  94. Kranaster L, Hoyer C, Aksay SS, Bumb JM, Müller N, Zill P, et al (2017) Antidepressant efficacy of electroconvulsive therapy is associated with a reduction of the innate cellular immune activity in the cerebrospinal fluid in patients with depression World J Biol. Psychiatry 1-11https://doi.org/10.1080/15622975.2017.1355473

  95. Zincir S, Öztürk P, Bilgen AE, İzci F, Yükselir C (2016) Levels of serum immunomodulators and alterations with electroconvulsive therapy in treatment-resistant major depression. Neuropsychiatr Dis Treat 12:1389–1396. https://doi.org/10.2147/NDT.S106652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Rush G, O’Donovan A, Nagle L, Conway C, McCrohan A, O’Farrelly C, Lucey JV, Malone KMJ (2016) Alteration of immune markers in a group of melancholic depressed patients and their response to electroconvulsive therapy. Affect Disord 205:60–68. https://doi.org/10.1016/j.jad.2016.06.035

    Article  CAS  Google Scholar 

  97. Fluitman SB, Heijnen CJ, Denys DA, Nolen WA, Balk FJ, Westenberg HGJ (2011) Electroconvulsive therapy has acute immunological and neuroendocrine effects in patients with major depressive disorder. Affect Disord 131:388–392. https://doi.org/10.1016/j.jad.2010.11.035

    Article  CAS  Google Scholar 

  98. Bah TM, Benderdour M, Kaloustian S, Karam R, Rousseau G, Godbout R (2011) Escitalopram reduces circulating pro-inflammatory cytokines and improves depressive behavior without affecting sleep in a rat model of post-cardiac infarct depression. Behav Brain Res 225:243–251. https://doi.org/10.1016/j.bbr.2011.07.039

    Article  CAS  PubMed  Google Scholar 

  99. Munzer A, Sack U, Mergl R, Schönherr J, Petersein C, Bartsch S, Kirkby KC, Bauer K et al (2013) Impact of Antidepressants on Cytokine Production of Depressed Patients in Vitro. Toxins 5:2227–2240. https://doi.org/10.3390/toxins5112227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Li Y, Shen R, Wen G, Ding R, Du A, Zhou J, Dong Z, Ren X et al (2017) Effects of Ketamine on Levels of Inflammatory Cytokines IL-6, IL-1β, and TNF-α in the Hippocampus of Mice Following Acute or Chronic Administration. Front Pharmacol 8:139. https://doi.org/10.3389/fphar.2017.00139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Eller T, Vasar V, Shlik J, Maron E (2008) Pro-inflammatory cytokines and treatment response to escitalopram in major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry 32:445–450. https://doi.org/10.1016/j.pnpbp.2007.09.015

    Article  CAS  PubMed  Google Scholar 

  102. Honack W, Loscher (1993) Sex differences in NMDA receptor mediated responses in rats. Brain Res 620:167–170. https://doi.org/10.1016/0006-8993(93)90287-w

    Article  CAS  PubMed  Google Scholar 

  103. Auer RN (1996) Effect of age and sex on N-methyl-D-aspartate antagonist-induced neuronal necrosis in rats. Stroke 27:743–746. https://doi.org/10.1161/01.str.27.4.743

    Article  CAS  PubMed  Google Scholar 

  104. Shors TJ, Falduto J, Leuner B (2004) The opposite effects of stress on dendritic spines in male vs. female rats are NMDA receptor-dependent. Eur J Neurosci 19:145–150. https://doi.org/10.1046/j.1460-9568.2003.03065.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Yrondi A, Sporer M, Péran P, Schmitt L, Arbus C, Sauvaget A (2018) Electroconvulsive therapy, depression, the immune system and inflammation: A systematic review. Brain Stimul 11:29–51. https://doi.org/10.1016/j.brs.2017.10.013

    Article  PubMed  Google Scholar 

  106. Więdłocha M, Marcinowicz P, Krupa R, Janoska-Jaździk M, Janus M, Dębowska W, Mosiołek A, Waszkiewicz N et al (2018) Effect of antidepressant treatment on peripheral inflammation markers – a meta-analysis. Prog Neuropsychopharmacol Biol Psychiatry 80:217–226. https://doi.org/10.1016/j.pnpbp.2017.04.026

    Article  CAS  PubMed  Google Scholar 

  107. Réus GZ, Dos Santos MA, Abelaira HM, Ribeiro KF, Petronilho F, Vuolo F, Colpo GD, Pfaffenseller B et al (2013) Imipramine reverses alterations in cytokines and BDNF levels induced by maternal deprivation in adult rats. Behav Brain Res 242:40–46. https://doi.org/10.1016/j.bbr.2012.11.044

    Article  CAS  PubMed  Google Scholar 

  108. Dong C, Zhang J, Yao W, Ren Q, Yang C, Ma M, Han M, Saito R et al (2016) Effects of escitalopram, R-citalopram, and reboxetine on serum levels of tumor necrosis factor-α, interleukin-10, and depression-like behavior in mice after lipopolysaccharide administration. Pharmacol Biochem Behav 144:7–12. https://doi.org/10.1016/j.pbb.2016.02.005

    Article  CAS  PubMed  Google Scholar 

  109. Zhan Y, Zhou Y, Zheng W, Liu W, Wang C, Lan X, Deng X, Xu Y et al (2020) Alterations of multiple peripheral inflammatory cytokine levels after repeated ketamine infusions in major depressive disorder. Transl Psychiatry 10:246. https://doi.org/10.1038/s41398-020-00933-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. McCarthy MM (2016) Multifaceted origins of sex differences in the brain. Philos Trans R Soc Lond B Biol Sci 371:20150106. https://doi.org/10.1098/rstb.2015.0106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The Translational Psychiatry Program (USA) is funded by a grant from the National Institute of Health/National Institute of Mental Health (1R21MH117636-01A1, to JQ). The Center of Excellence on Mood Disorders (USA) is funded by the Pat Rutherford Jr. Chair in Psychiatry, John S. Dunn Foundation and Anne and Don Fizer Foundation Endowment for Depression Research. The Translational Psychiatry Laboratory (Brazil) is funded by grants from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (GZR and JQ), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) (JQ and GZR), Fundação de Amparo à Pesquisa e Inovação do Estado de Santa Catarina (FAPESC) (GZR and JQ), and Instituto Cérebro e Mente (JQ and GZR). JQ is a 1A and GZR is a 2 CNPq Research Fellow.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

All authors participated in the design and interpretation of the studies, analyzed the data and reviewed the manuscript; NSM conducted the maternal deprivation protocol. TR, MEMB, ABM, NMA, NSM, LRM, LAB and BCC performed drugs and ECT application, behavioral tests and sample collection. LGD, LJ, SB and FP performed the oxidative stress analysis. GZR and COA performed the statistical analysis. HMA, ABM and GZR wrote the manuscript. JQ and TT reviewed the manuscript. GZR and TR were in charge of designing the experiment and reviewed the manuscript.

Corresponding author

Correspondence to Gislaine Z. Réus.

Ethics declarations

None.

Compliance with ethical standards

This study complies with ethical concerns and was approved by the UNESC's Ethics Committee under protocol number: 133–2019.

Consent to participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abelaira, H.M., Rosa, T., de Moura, A.B. et al. Combination of electroconvulsive stimulation with ketamine or escitalopram protects the brain against inflammation and oxidative stress induced by maternal deprivation and is critical for associated behaviors in male and female rats. Mol Neurobiol 59, 1452–1475 (2022). https://doi.org/10.1007/s12035-021-02718-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-021-02718-x

Keywords

Navigation