Skip to main content

Advertisement

Log in

Role of lncRNAs in the Development of Ischemic Stroke and Their Therapeutic Potential

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Stroke is a major cause of premature mortality and disability around the world. Therefore, identification of cellular and molecular processes implicated in the pathogenesis and progression of ischemic stroke has become a priority. Long non-coding RNAs (lncRNAs) are emerging as significant players in the pathophysiology of cerebral ischemia. They are involved in different signalling pathways of cellular processes like cell apoptosis, autophagy, angiogenesis, inflammation, and cell death, impacting the progression of cerebral damage. Exploring the functions of these lncRNAs and their mechanism of action may help in the development of promising treatment strategies. In this review, the current knowledge of lncRNAs in ischemic stroke, focusing on the mechanism by which they cause cellular apoptosis, inflammation, and microglial activation, has been summarized. Very few lncRNAs have been functionally annotated. Therefore, the therapies based on lncRNAs still face many hurdles since the potential targets are likely to increase with the identification of new ones. Majority of experiments involving the identification and function of lncRNAs have been carried out in animal models, and the role of lncRNAs in human stroke presents a challenge. However, mitigating these issues through more rational experimental design might lead to the development of lncRNA-based stroke therapies to treat ischemic stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Krishnamurthi RV, Ikeda T, Feigin VL (2020) Global, Regional and Country-Specific Burden of Ischaemic Stroke, Intracerebral Haemorrhage and Subarachnoid Haemorrhage: a systematic analysis of the Global Burden of Disease Study 2017. Neuroepidemiology 54(2):171–179

    Article  PubMed  Google Scholar 

  2. Campbell BC, De Silva DA, Macleod MR, Coutts SB, Schwamm LH, Davis SM, Donnan GA (2019) Ischaemic stroke. Nat Rev Dis Prim 5(1):1–22

    Google Scholar 

  3. Bao M-H, Szeto V, Yang BB, Zhu S-Z, Sun H-S, Feng Z-P (2018) Long non-coding RNAs in ischemic stroke. Cell Death Dis 9(3):1–12

    Article  CAS  Google Scholar 

  4. Akella A, Bhattarai S, Dharap A (2019) Long noncoding RNAs in the pathophysiology of ischemic stroke. NeuroMolecular Med 21:1–10

    Article  CAS  Google Scholar 

  5. Vemuganti R (2013) All’s well that transcribes well: non-coding RNAs and post-stroke brain damage. Neurochem Int 63(5):438–449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. He W, Wei D, Cai D, Chen S, Li S, Chen W (2018) Altered long non-coding RNA transcriptomic profiles in ischemic stroke. Hum Gene Ther 29(6):719–732

    Article  CAS  PubMed  Google Scholar 

  7. Kaur H, Sarmah D, Saraf J, Vats K, Kalia K, Borah A, Yavagal DR, Dave KR et al (2018) Noncoding RNAs in ischemic stroke: time to translate. Ann N Y Acad Sci 1421(1):19–36

    Article  CAS  PubMed  Google Scholar 

  8. Wang S-W, Liu Z, Shi Z-S (2018) Non-coding RNA in acute ischemic stroke: mechanisms, biomarkers and therapeutic targets. Cell Transplant 27(12):1763–1777

    Article  PubMed  PubMed Central  Google Scholar 

  9. Ren W, Yang X (2018) Pathophysiology of long non-coding RNAs in ischemic stroke. Front Mol Neurosci 11:96

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Dharap A, Nakka VP, Vemuganti R (2012) Effect of focal ischemia on long noncoding RNAs. Stroke 43(10):2800–2802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chen R, Xu X, Huang L, Zhong W, Cui L (2019a) The regulatory role of long noncoding RNAs in different brain cell types involved in ischemic stroke. Front Mol Neurosci 12:61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chen Z, Chen X, Guo R, Meng J (2019b) Protective effects of lncRNA H19 silence against hypoxia-induced injury in PC-12 cells by regulating miR-28. Int J Biol Macromol 121:546–555

    Article  CAS  PubMed  Google Scholar 

  13. Yang H, Xi X, Zhao B, Su Z, Wang Z (2018) KLF4 protects brain microvascular endothelial cells from ischemic stroke induced apoptosis by transcriptionally activating MALAT1. Biochem Biophys Res Commun 495(3):2376–2382

    Article  CAS  PubMed  Google Scholar 

  14. Gao Q, Wang Y (2020) Long noncoding RNA MALAT1 regulates apoptosis in ischemic stroke by sponging miR-205-3p and modulating PTEN expression. Am J Transl Res 12(6):2738

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Lee E-J, Tournier C (2011) The requirement of uncoordinated 51-like kinase 1 (ULK1) and ULK2 in the regulation of autophagy. Autophagy 7(7):689–695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Guo D, Ma J, Yan L, Li T, Li Z, Han X, Shui S (2017) Down-regulation of Lncrna MALAT1 attenuates neuronal cell death through suppressing Beclin1-dependent autophagy by regulating Mir-30a in cerebral ischemic stroke. Cell Physiol Biochem 43(1):182–194

    Article  CAS  PubMed  Google Scholar 

  17. Henshall DC, Araki T, Schindler CK, Lan J-Q, Tiekoter KL, Taki W, Simon RP (2002) Activation of Bcl-2-associated death protein and counter-response of Akt within cell populations during seizure-induced neuronal death. J Neurosci 22(19):8458–8465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang, J., Rui, Y., Gao, M., Wang, L., & Yan, B. C. (2020a). Expression of long non-coding RNA RGD1566344 in the brain cortex of male mice after focal cerebral ischemia–reperfusion and the neuroprotective effect of a non-coding RNA RGD1566344 inhibitor. Cellular and Molecular Neurobiology.

  19. Zhang L, Yang H, Li W-J, Liu Y-H (2020b) LncRNA MALAT1 promotes OGD-induced apoptosis of brain microvascular endothelial cells by sponging miR-126 to repress PI3K/Akt signaling pathway. Neurochem Res 45(9):2091–2099

    Article  CAS  PubMed  Google Scholar 

  20. Chen J-J, Zhou S-H (2011) Mesenchymal stem cells overexpressing MiR-126 enhance ischemic angiogenesis via the AKT/ERK-related pathway. Cardiol J 18(6):675–681

    Article  PubMed  Google Scholar 

  21. Chen L, Feng P, Zhu X, He S, Duan J, Zhou D (2016a) Long non-coding RNA Malat1 promotes neurite outgrowth through activation of ERK/MAPK signalling pathway in N2a cells. J Cell Mol Med 20(11):2102–2110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chen L, Wang J, Wang B, Yang J, Gong Z, Zhao X et al (2016b) MiR-126 inhibits vascular endothelial cell apoptosis through targeting PI3K/Akt signaling. Ann Hematol 95(3):365–374

    Article  CAS  PubMed  Google Scholar 

  23. Wang H-J, Tang X-L, Huang G, Li Y-B, Pan R-H, Zhan J, Wu YK, Liang JF et al (2020a) Long non-coding KCNQ1OT1 promotes oxygen-glucose-deprivation/reoxygenation-induced neurons injury through regulating MIR-153-3p/FOXO3 axis. J Stroke Cerebrovasc Dis 29(10):105126

    Article  PubMed  Google Scholar 

  24. Wang H, Zheng X, Jin J, Zheng L, Guan T, Huo Y et al (2020b) LncRNA MALAT1 silencing protects against cerebral ischemia-reperfusion injury through miR-145 to regulate AQP4. J Biomed Sci 27(1):1–12

    Article  CAS  Google Scholar 

  25. Wang Y, Gu X-X, Huang H-T, Liu C-H, Wei Y-S (2020c) A genetic variant in the promoter of lncRNA MALAT1 is related to susceptibility of ischemic stroke. Lipids Health Dis 19:1–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang Y, Luo Y, Yao Y, Ji Y, Feng L, Du F et al (2020d) Silencing the lncRNA Maclpil in pro-inflammatory macrophages attenuates acute experimental ischemic stroke via LCP1 in mice. J Cereb Blood Flow Metab 40(4):747–759

    Article  CAS  PubMed  Google Scholar 

  27. Cao D-W, Liu M-M, Duan R, Tao Y-F, Zhou J-S, Fang W-R et al (2020) The lncRNA Malat1 functions as a ceRNA to contribute to berberine-mediated inhibition of HMGB1 by sponging miR-181c-5p in poststroke inflammation. Acta Pharmacol Sin 41(1):22–33

    Article  CAS  PubMed  Google Scholar 

  28. Wang J, Cao B, Han D, Sun M, Feng J (2017a) Long non-coding RNA H19 induces cerebral ischemia reperfusion injury via activation of autophagy. Aging Dis 8(1):71–84

    Article  PubMed  PubMed Central  Google Scholar 

  29. Wang J, Zhao H, Fan Z, Li G, Ma Q, Tao Z, Wang R, Feng J et al (2017b) Long noncoding RNA H19 promotes neuroinflammation in ischemic stroke by driving histone Deacetylase 1–dependent M1 microglial polarization. Stroke 48(8):2211–2221

    Article  CAS  PubMed  Google Scholar 

  30. Gao N, Tang H, Gao L, Tu G-L, Luo H, Xia Y (2020) LncRNA H19 aggravates cerebral ischemia/reperfusion injury by functioning as a ceRNA for miR-19a-3p to target PTEN. Neuroscience. 437:117–129

    Article  CAS  PubMed  Google Scholar 

  31. Li, H., Tang, C., & Wang, D. (2020a). FILncRNA H19 promotes inflammatory response induced by cerebral ischemia-reperfusion injury through regulating miR-138-5p/p65. Biochemistry and Cell Biology(ja).

  32. Li H, Yang Y, Hong W, Huang M, Wu M, Zhao X (2020b) Applications of genome editing technology in the targeted therapy of human diseases: mechanisms, advances and prospects. Signal Transduct Targeted Ther 5(1):1–23

    Article  Google Scholar 

  33. Li W, Shen W, Zhang B, Tian K, Li Y, Mu L et al (2020c) Long non-coding RNA LncKdm2b regulates cortical neuronal differentiation by cis-activating Kdm2b. Protein Cell 11(3):161–186

    Article  CAS  PubMed  Google Scholar 

  34. Hu S, Zheng J, Du Z, Wu G (2020) Knock down of lncRNA H19 promotes axon sprouting and functional recovery after cerebral ischemic stroke. Brain Res 1732:146681

    Article  CAS  PubMed  Google Scholar 

  35. Huang J, Yang J, Li J, Chen Z, Guo X, Huang S, Gu L, Su L (2019a) Association of long noncoding RNA H19 polymorphisms with the susceptibility and clinical features of ischemic stroke in southern Chinese Han population. Metab Brain Dis 34(4):1011–1021

    Article  CAS  PubMed  Google Scholar 

  36. Huang Y, Wang L, Mao Y, Nan G (2019b) Long noncoding RNA-H19 contributes to atherosclerosis and induces ischemic stroke via the upregulation of acid phosphatase 5. Front Neurol 10:32

    Article  PubMed  PubMed Central  Google Scholar 

  37. Qi X, Shao M, Sun H, Shen Y, Meng D, Huo W (2017) Long non-coding RNA SNHG14 promotes microglia activation by regulating miR-145-5p/PLA2G4A in cerebral infarction. Neuroscience 348:98–106

    Article  CAS  PubMed  Google Scholar 

  38. Wei R, Zhang L, Hu W, Wu J, Zhang W (2019) Long non-coding RNA AK038897 aggravates cerebral ischemia/reperfusion injury via acting as a ceRNA for miR-26a-5p to target DAPK1. Exp Neurol 314:100–110

    Article  CAS  PubMed  Google Scholar 

  39. Gai H-Y, Wu C, Zhang Y, Wang D (2019) Long non-coding RNA CHRF modulates the progression of cerebral ischemia/reperfusion injury via miR-126/SOX6 signaling pathway. Biochem Biophys Res Commun 514(2):550–557

    Article  CAS  PubMed  Google Scholar 

  40. Fasihi A, Heydari-Zarnagh H, Zahedi M, Goudarzian M, Kafashzadeh M, Meshkani SE, Ramazi S (2020) Study and characterization of long non-coding RUNX1-IT1 among large artery atherosclerosis stroke patients based on the ceRNA hypothesis. J Mol Neurosci 71:1–11

    Google Scholar 

  41. Zhao J, He L, Yin L (2020) lncRNA NEAT1 binds to MiR-339-5p to increase HOXA1 and alleviate ischemic brain damage in neonatal mice. Mol Ther Nucleic Acids 20:117–127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jing H, Liu L, Jia Y, Yao H, Ma F (2019) Overexpression of the long non-coding RNA Oprm1 alleviates apoptosis from cerebral ischemia-reperfusion injury through the Oprm1/miR-155/GATA3 axis. Artif Cells Nanomed Biotechnol 47(1):2431–2439

    Article  CAS  PubMed  Google Scholar 

  43. Zhong W, Li Y-C, Huang Q-Y, Tang X-Q (2020) lncRNA ANRIL ameliorates oxygen and glucose deprivation (OGD) induced injury in neuron cells via miR-199a-5p/CAV-1 axis. Neurochem Res 45:1–11

    Article  CAS  Google Scholar 

  44. Jin R, Yang G, Li G (2010) Inflammatory mechanisms in ischemic stroke: role of inflammatory cells. J Leukoc Biol 87(5):779–789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hutchinson JN, Ensminger AW, Clemson CM, Lynch CR, Lawrence JB, Chess A (2007) A screen for nuclear transcripts identifies two linked noncoding RNAs associated with SC35 splicing domains. BMC Genomics 8(1):39

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Ji P, Diederichs S, Wang W, Böing S, Metzger R, Schneider PM et al (2003) MALAT-1, a novel noncoding RNA, and thymosin β 4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene 22(39):8031–8041

    Article  PubMed  CAS  Google Scholar 

  47. Ip JY, Nakagawa S (2012) Long non-coding RNAs in nuclear bodies. Develop Growth Differ 54(1):44–54

    Article  CAS  Google Scholar 

  48. Nguyen TM, Kabotyanski EB, Reineke LC, Shao J, Xiong F, Lee J-H et al (2020) The SINEB1 element in the long non-coding RNA Malat1 is necessary for TDP-43 proteostasis. Nucleic Acids Res 48(5):2621–2642

    Article  CAS  PubMed  Google Scholar 

  49. Spector DL, Lamond AI (2011) Nuclear speckles. Cold Spring Harb Perspect Biol 3(2):a000646

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. West JA, Davis CP, Sunwoo H, Simon MD, Sadreyev RI, Wang PI, Tolstorukov MY, Kingston RE (2014) The long noncoding RNAs NEAT1 and MALAT1 bind active chromatin sites. Mol Cell 55(5):791–802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wang D, Ding L, Wang L, Zhao Y, Sun Z, Karnes RJ, Zhang J, Huang H (2015) LncRNA MALAT1 enhances oncogenic activities of EZH2 in castration-resistant prostate cancer. Oncotarget 6(38):41045–41055

    Article  PubMed  PubMed Central  Google Scholar 

  52. Yang L, Lin C, Liu W, Zhang J, Ohgi KA, Grinstein JD, Dorrestein PC, Rosenfeld MG (2011) ncRNA-and Pc2 methylation-dependent gene relocation between nuclear structures mediates gene activation programs. Cell 147(4):773–788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Arun G, Aggarwal D, Spector DL (2020) MALAT1 Long non-coding RNA: functional implications. Non-Coding RNA 6(2):22

    Article  CAS  PubMed Central  Google Scholar 

  54. Li X, Zhou B, Chen L, Gou L-T, Li H, Fu X-D (2017a) GRID-seq reveals the global RNA–chromatin interactome. Nat Biotechnol 35(10):940–950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Li Z, Li J, Tang N (2017b) Long noncoding RNA Malat1 is a potent autophagy inducer protecting brain microvascular endothelial cells against oxygen-glucose deprivation/reoxygenation-induced injury by sponging miR-26b and upregulating ULK2 expression. Neuroscience 354:1–10

    Article  CAS  PubMed  Google Scholar 

  56. Zhang B, Wang D, Ji T-F, Shi L, Yu J-L (2017a) Overexpression of lncRNA ANRIL up-regulates VEGF expression and promotes angiogenesis of diabetes mellitus combined with cerebral infarction by activating NF-κB signaling pathway in a rat model. Oncotarget 8(10):17347–17359

    Article  PubMed  Google Scholar 

  57. Zhang J, Yuan L, Zhang X, Hamblin M, Zhu T, Meng F et al (2016) Altered long non-coding RNA transcriptomic profiles in brain microvascular endothelium after cerebral ischemia. Exp Neurol 277:162–170

    Article  CAS  PubMed  Google Scholar 

  58. Zhang X, Tang X, Liu K, Hamblin MH, Yin K-J (2017b) Long noncoding RNA Malat1 regulates cerebrovascular pathologies in ischemic stroke. J Neurosci 37(7):1797–1806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Xin JW, Jiang YG (2017) Long noncoding RNA MALAT1 inhibits apoptosis induced by oxygen-glucose deprivation and reoxygenation in human brain microvascular endothelial cells. Exp Ther Med 13(4):1225–1234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Li H, Gao A, Feng D, Wang Y, Zhang L, Cui Y, Li B, Wang Z et al (2014) Evaluation of the protective potential of brain microvascular endothelial cell autophagy on blood–brain barrier integrity during experimental cerebral ischemia–reperfusion injury. Transl Stroke Res 5(5):618–626

    Article  PubMed  Google Scholar 

  61. Musiyenko A, Bitko V, Barik S (2008) Ectopic expression of miR-126*, an intronic product of the vascular endothelial EGF-like 7 gene, regulates prostein translation and invasiveness of prostate cancer LNCaP cells. J Mol Med 86(3):313–322

    Article  CAS  PubMed  Google Scholar 

  62. Long G, Wang F, Li H, Yin Z, Sandip C, Lou Y, Wang Y, Chen C et al (2013) Circulating miR-30a, miR-126 and let-7b as biomarker for ischemic stroke in humans. BMC Neurol 13(1):178

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Forough R, Weylie B, Collins C, Parker JL, Zhu J, Barhoumi R, Watson DK (2006) Transcription factor Ets-1 regulates fibroblast growth factor-1-mediated angiogenesis in vivo: role of Ets-1 in the regulation of the PI3K/AKT/MMP-1 pathway. J Vasc Res 43(4):327–337

    Article  CAS  PubMed  Google Scholar 

  64. Shultz JC, Goehe RW, Wijesinghe DS, Murudkar C, Hawkins AJ, Shay JW, Minna JD, Chalfant CE (2010) Alternative splicing of caspase 9 is modulated by the phosphoinositide 3-kinase/Akt pathway via phosphorylation of SRp30a. Cancer Res 70(22):9185–9196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Trivedi V, Boire A, Tchernychev B, Kaneider NC, Leger AJ, O’Callaghan K et al (2009) Platelet matrix metalloprotease-1 mediates thrombogenesis by activating PAR1 at a cryptic ligand site. Cell 137(2):332–343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Xin M, Deng X (2005) Nicotine inactivation of the proapoptotic function of Bax through phosphorylation. J Biol Chem 280(11):10781–10789

    Article  CAS  PubMed  Google Scholar 

  67. Disorders NION, Group SRPSS (1995) Tissue plasminogen activator for acute ischemic stroke. N Engl J Med 333(24):1581–1588

    Article  Google Scholar 

  68. Wu L, Xiong X, Wu X, Ye Y, Jian Z, Zhi Z, Gu L (2020) Targeting oxidative stress and inflammation to prevent ischemia-reperfusion injury. Front Mol Neurosci 13:28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Xiao Z, Qiu Y, Lin Y, Medina R, Zhuang S, Rosenblum JS, Cui J, Li Z et al (2019) Blocking lncRNA H19-miR-19a-Id2 axis attenuates hypoxia/ischemia induced neuronal injury. Aging (Albany NY) 11(11):3585–3600

    Article  CAS  Google Scholar 

  70. Wang J, Cao B, Zhao H, Gao Y, Luo Y, Chen Y, Feng J (2019) Long noncoding RNA H19 prevents neurogenesis in ischemic stroke through p53/Notch1 pathway. Brain Res Bull 150:111–117

    Article  CAS  PubMed  Google Scholar 

  71. Pedragosa, J., Miró-Mur, F., Otxoa-de-Amezaga, A., Justicia, C., Ruíz-Jaén, F., Ponsaerts, P., . . . Planas, A. M. (2020). CCR2 deficiency in monocytes impairs angiogenesis and functional recovery after ischemic stroke in mice. J Cerebr Blood Flow Metab, 0271678X20909055.

  72. Fang W, Zhai X, Han D, Xiong X, Wang T, Zeng X et al (2018) CCR2-dependent monocytes/macrophages exacerbate acute brain injury but promote functional recovery after ischemic stroke in mice. Theranostics 8(13):3530–3543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Taxin ZH, Neymotin SA, Mohan A, Lipton P, Lytton WW (2014) Modeling molecular pathways of neuronal ischemia. Prog Mol Biol Transl Sci 123:249–275 Elsevier

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Liu X, Hou L, Huang W, Gao Y, Lv X, Tang J (2016) The mechanism of long non-coding RNA MEG3 for neurons apoptosis caused by hypoxia: mediated by miR-181b-12/15-LOX signaling pathway. Front Cell Neurosci 10:201

    Article  PubMed  PubMed Central  Google Scholar 

  75. Yan H, Yuan J, Gao L, Rao J, Hu J (2016) Long noncoding RNA MEG3 activation of p53 mediates ischemic neuronal death in stroke. Neuroscience 337:191–199

    Article  CAS  PubMed  Google Scholar 

  76. Wu Z, Wu P, Zuo X, Yu N, Qin Y, Xu Q, He S, Cen B et al (2017) LncRNA-N1LR enhances neuroprotection against ischemic stroke probably by inhibiting p53 phosphorylation. Mol Neurobiol 54(10):7670–7685

    Article  CAS  PubMed  Google Scholar 

  77. Chen F, Zhang L, Wang E, Zhang C, Li X (2018a) LncRNA GAS5 regulates ischemic stroke as a competing endogenous RNA for miR-137 to regulate the Notch1 signaling pathway. Biochem Biophys Res Commun 496(1):184–190

    Article  CAS  PubMed  Google Scholar 

  78. Chen X, Sun Y, Cai R, Wang G, Shu X, Pang W (2018b) Long noncoding RNA: multiple players in gene expression. BMB Rep 51(6):280–289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Xiong Z, Zhang Q, Wang D, Hu L (2018) Overexpression of TUG1 promotes neuronal death after cerebral infarction by regulating microRNA-9. Eur Rev Med Pharmacol Sci 22(21):7393–7400

    PubMed  Google Scholar 

  80. Chen S, Wang M, Yang H, Mao L, He Q, Jin H, Ye ZM, Luo XY et al (2017) LncRNA TUG1 sponges microRNA-9 to promote neurons apoptosis by up-regulated Bcl2l11 under ischemia. Biochem Biophys Res Commun 485(1):167–173

    Article  PubMed  CAS  Google Scholar 

  81. Alishahi M, Ghaedrahmati F, Kolagar TA, Winlow W, Nikkar N, Farzaneh M, Khoshnam SE (2019) Long non-coding RNAs and cell death following ischemic stroke. Metab Brain Dis 34:1–9

    Article  CAS  Google Scholar 

  82. Mehta SL, Kim T, Vemuganti R (2015) Long noncoding RNA FosDT promotes ischemic brain injury by interacting with REST-associated chromatin-modifying proteins. J Neurosci 35(50):16443–16449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Noh K-M, Hwang J-Y, Follenzi A, Athanasiadou R, Miyawaki T, Greally JM, Bennett MVL, Zukin RS (2012) Repressor element-1 silencing transcription factor (REST)-dependent epigenetic remodeling is critical to ischemia-induced neuronal death. Proc Natl Acad Sci 109(16):E962–E971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Xu Q, Deng F, Xing Z, Wu Z, Cen B, Xu S et al (2016) Long non-coding RNA C2dat1 regulates CaMKII δ expression to promote neuronal survival through the NF-κ B signaling pathway following cerebral ischemia. Cell Death Dis 7(3):e2173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Zhang L, Xue Z, Yan J, Wang J, Liu Q, Jiang H (2019) LncRNA Riken-201 and Riken-203 modulates neural development by regulating the Sox6 through sequestering miRNAs. Cell Prolif 52(3):e12573

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Kanduri, C. (2011). Kcnq1ot1: a chromatin regulatory RNA. Paper presented at the Seminars in cell & developmental biology.

  87. Knauss JL, Miao N, Kim S-N, Nie Y, Shi Y, Wu T et al (2018) Long noncoding RNA Sox2ot and transcription factor YY1 co-regulate the differentiation of cortical neural progenitors by repressing Sox2. Cell Death Dis 9(8):1–13

    Article  CAS  Google Scholar 

  88. Weng R, Lu C, Liu X, Li G, Lan Y, Qiao J et al (2018) Long noncoding RNA-1604 orchestrates neural differentiation through the miR-200c/ZEB axis. Stem Cells 36(3):325–336

    Article  CAS  PubMed  Google Scholar 

  89. Ng S-Y, Bogu GK, Soh BS, Stanton LW (2013) The long noncoding RNA RMST interacts with SOX2 to regulate neurogenesis. Mol Cell 51(3):349–359

    Article  CAS  PubMed  Google Scholar 

  90. Pavlaki I, Alammari F, Sun B, Clark N, Sirey T, Lee S et al (2018) The long non-coding RNA Paupar promotes KAP 1-dependent chromatin changes and regulates olfactory bulb neurogenesis. EMBO J 37(10):e98219

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Cheng X, Li H, Zhao H, Li W, Qin J, Jin G (2019) Function and mechanism of long non-coding RNA Gm21284 in the development of hippocampal cholinergic neurons. Cell Biosci 9(1):1–12

    Article  Google Scholar 

  92. Gao Y, Zhang R, Wei G, Dai S, Zhang X, Yang W, Li X, Bai C (2019) Long non-coding RNA maternally expressed 3 increases the expression of neuron-specific genes by targeting miR-128-3p in all-trans retinoic acid-induced neurogenic differentiation from amniotic epithelial cells. Front Cell Dev Biol 7:342

    Article  PubMed  PubMed Central  Google Scholar 

  93. Grammatikakis, I., & Gorospe, M. (2016). Identification of neural stem cell differentiation repressor complex Pnky-PTBP1. Stem Cell Investig, 3.

  94. Michalik KM, You X, Manavski Y, Doddaballapur A, Zörnig M, Braun T et al (2014) Long noncoding RNA MALAT1 regulates endothelial cell function and vessel growth. Circ Res 114(9):1389–1397

    Article  CAS  PubMed  Google Scholar 

  95. Liu J, Li Q, Zhang K-S, Hu B, Niu X, Zhou S-M et al (2017) Downregulation of the long non-coding RNA Meg3 promotes angiogenesis after ischemic brain injury by activating notch signaling. Mol Neurobiol 54(10):8179–8190

    Article  CAS  PubMed  Google Scholar 

  96. Zhan R, Xu K, Pan J, Xu Q, Xu S, Shen J (2017) Long noncoding RNA MEG3 mediated angiogenesis after cerebral infarction through regulating p53/NOX4 axis. Biochem Biophys Res Commun 490(3):700–706

    Article  CAS  PubMed  Google Scholar 

  97. Burnside RD, Pasion R, Mikhail FM, Carroll AJ, Robin NH, Youngs EL et al (2011) Microdeletion/microduplication of proximal 15q11. 2 between BP1 and BP2: a susceptibility region for neurological dysfunction including developmental and language delay. Hum Genet 130(4):517–528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Sadikovic B, Fernandes P, Zhang VW, Ward PA, Miloslavskaya I, Rhead W, Rosenbaum R, Gin R et al (2014) Mutation update for UBE 3 A variants in Angelman syndrome. Hum Mutat 35(12):1407–1417

    Article  CAS  PubMed  Google Scholar 

  99. Zhong Y, Yu C, Qin W (2019) LncRNA SNHG14 promotes inflammatory response induced by cerebral ischemia/reperfusion injury through regulating miR-136-5p/ROCK1. Cancer Gene Ther 26(7):234–247

    Article  CAS  PubMed  Google Scholar 

  100. Duan X, Han L, Peng D, Peng C, Xiao L, Bao Q, Peng H (2019) Bioinformatics analysis of a long non-coding RNA and mRNA regulation network in rats with middle cerebral artery occlusion based on RNA sequencing. Mol Med Rep 20(1):417–432

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Liu C, Yang J, Zhang C, Liu M, Geng X, Ji X, du H, Zhao H (2018) Analysis of long non-coding RNA expression profiles following focal cerebral ischemia in mice. Neurosci Lett 665:123–129

    Article  CAS  PubMed  Google Scholar 

  102. Wolska M, Jarosz-Popek J, Junger E, Wicik Z, Porshoor T, Sharif L et al (2020) Long non-coding RNAs as promising therapeutic approach in ischemic stroke: a comprehensive review. Mol Neurobiol 58:1–19

    Google Scholar 

  103. Lennox KA, Behlke MA (2016) Cellular localization of long non-coding RNAs affects silencing by RNAi more than by antisense oligonucleotides. Nucleic Acids Res 44(2):863–877

    Article  CAS  PubMed  Google Scholar 

  104. Carlevaro-Fita J, Johnson R (2019) Global positioning system: understanding long noncoding RNAs through subcellular localization. Mol Cell 73(5):869–883

    Article  CAS  PubMed  Google Scholar 

  105. Mercer TR, Dinger ME, Sunkin SM, Mehler MF, Mattick JS (2008) Specific expression of long noncoding RNAs in the mouse brain. Proc Natl Acad Sci 105(2):716–721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Hobuß L, Bär C, Thum T (2019) Long non-coding RNAs: at the heart of cardiac dysfunction? Front Physiol 10:30

    Article  PubMed  PubMed Central  Google Scholar 

  107. Myserlis P, Radmanesh F, Anderson CD (2020) Translational genomics in neurocritical care: a review. Neurotherapeutics 17:1–18

    Article  Google Scholar 

  108. Gomes CP, Spencer H, Ford KL, Michel LY, Baker AH, Emanueli C et al (2017) The function and therapeutic potential of long non-coding RNAs in cardiovascular development and disease. Mol Ther Nucleic Acids 8:494–507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Pedram Fatemi R, Salah-Uddin S, Modarresi F, Khoury N, Wahlestedt C, Faghihi MA (2015) Screening for small-molecule modulators of long noncoding RNA-protein interactions using AlphaScreen. J Biomol Screen 20(9):1132–1141

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Awwad DA (2019) Beyond classic editing: innovative CRISPR approaches for functional studies of long non-coding RNA. Biol Method Protocols 4(1):bpz017

    Article  CAS  Google Scholar 

  111. Gilbert LA, Horlbeck MA, Adamson B, Villalta JE, Chen Y, Whitehead EH et al (2014) Genome-scale CRISPR-mediated control of gene repression and activation. Cell 159(3):647–661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Hung J, Miscianinov V, Sluimer JC, Newby DE, Baker AH (2018) Targeting non-coding RNA in vascular biology and disease. Front Physiol 9:1655

    Article  PubMed  PubMed Central  Google Scholar 

  113. Khorkova O, Hsiao J, Wahlestedt C (2015) Basic biology and therapeutic implications of lncRNA. Adv Drug Deliv Rev 87:15–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Zangrando J, Zhang L, Vausort M, Maskali F, Marie P-Y, Wagner DR, Devaux Y (2014) Identification of candidate long non-coding RNAs in response to myocardial infarction. BMC Genomics 15(1):460

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Zampetaki A, Albrecht A, Steinhofel K (2018) Long non-coding RNA structure and function: is there a link? Front Physiol 9:1201

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are also grateful to the Central University of Punjab, Bathinda, India, for providing the academic, administrative, and infrastructural support to carry out this work.

Availability of Data and Material

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

Funding

Ms. Kanika Vasudeva is grateful to University Grants Commission (UGC), India, for providing financial assistance in the form of UGC-NET, JRF award.

Author information

Authors and Affiliations

Authors

Contributions

Anjana Munshi and Kanika Vasudeva had the idea for the article, Kanika Vasudeva and Anyeasha Dutta performed the literature search, and Anyeasha Dutta and Kanika Vasudeva made the diagrams. Anjana Munshi and Kanika Vasudeva drafted and revised the manuscript. All the authors agreed to all the changes made in the manuscript and submission to Molecular Neurobiology.

Corresponding author

Correspondence to Anjana Munshi.

Ethics declarations

Consent to Participate

Not applicable

Consent to Publish

Not applicable

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasudeva, K., Dutta, A. & Munshi, A. Role of lncRNAs in the Development of Ischemic Stroke and Their Therapeutic Potential. Mol Neurobiol 58, 3712–3728 (2021). https://doi.org/10.1007/s12035-021-02359-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-021-02359-0

Keywords

Navigation