Skip to main content

Advertisement

Log in

Aging-Dependent Mitophagy Dysfunction in Alzheimer’s Disease

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is the most common late-onset dementia characterized by the deposition of extracellular amyloid plaques and formation of intracellular neurofibrillary tangles, which eventually lead to neuronal loss and cognitive deficits. Multiple lines of evidence indicate that mitochondrial dysfunction is involved in the initiation and progression of AD. As essential machinery for mitochondrial quality control, mitophagy plays a housekeeping role in neuronal cells by eliminating dysfunctional or excessive mitochondria. At present, mounting evidence support that the activity of mitophagy markedly declines in human brains during aging. Impaired mitophagy and mitochondrial dysfunction were causally linked to bioenergetic deficiency, oxidative stress, microglial activation, and chronic inflammation, thereby aggravating the Aβ and tau pathologies and leading to neuron loss in AD. This review summarizes recent evidence for age-associated mitophagy decline during human aging and provides an overview of mitochondrial dysfunction involved in the process of AD. It also discusses the underlying mechanisms through which defective mitophagy leads to neuronal cell death in AD. Therapeutic interventions aiming to restore mitophagy functions can be used as a strategy for ameliorating AD pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

Aβ:

Amyloid beta

AD:

Alzheimer disease

APP:

Amyloid precursor protein

IL-1β:

Interleukin-1β

ROS:

Reactive oxygen species

NFT:

Neurofibrillary tangles

TNF:

Tumor necrosis factor

References

  1. Hampel H, Prvulovic D, Teipel S, Jessen F, Luckhaus C, Frolich L, Riepe MW, Dodel R et al (2011) The future of Alzheimer’s disease: the next 10 years. Prog Neurobiol 95:718–728

    Article  PubMed  Google Scholar 

  2. Price JL, Davis PB, Morris JC, White DL (1991) The distribution of tangles, plaques and related immunohistochemical markers in healthy aging and Alzheimer’s disease. Neurobiol Aging 12:295–312

    Article  CAS  PubMed  Google Scholar 

  3. Citron M (2010) Alzheimer’s disease: strategies for disease modification. Nat Rev Drug Discov 9:387–398

    Article  CAS  PubMed  Google Scholar 

  4. Chakravorty A, Jetto CT, Manjithaya R (2019) Dysfunctional mitochondria and mitophagy as drivers of Alzheimer’s disease pathogenesis. Front Aging Neurosci 11:311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wang W, Zhao F, Ma X, Perry G, Zhu X (2020) Mitochondria dysfunction in the pathogenesis of Alzheimer’s disease: recent advances. Mol Neurodegener 15:30

    Article  PubMed  PubMed Central  Google Scholar 

  6. Swerdlow RH (2018) Mitochondria and mitochondrial cascades in Alzheimer’s disease. J Alzheimers Dis 62:1403–1416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cai Q, Jeong YY (2020) Mitophagy in Alzheimer’s disease and other age-related neurodegenerative diseases. Cells 9:150

  8. Fang EF, Hou Y, Palikaras K, Adriaanse BA, Kerr JS, Yang B, Lautrup S, Hasan-Olive MM et al (2019) Mitophagy inhibits amyloid-beta and tau pathology and reverses cognitive deficits in models of Alzheimer’s disease. Nat Neurosci 22:401–412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kerr JS, Adriaanse BA, Greig NH, Mattson MP, Cader MZ, Bohr VA, Fang EF (2017) Mitophagy and Alzheimer’s disease: cellular and molecular mechanisms. Trends Neurosci 40:151–166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rai SN, Singh C, Singh A, Singh MP, Singh BK (2020) Mitochondrial dysfunction: a potential therapeutic target to treat Alzheimer’s disease. Mol Neurobiol 57:3075–3088

    Article  CAS  PubMed  Google Scholar 

  11. WHO (2015) World Alzheimer Report 2015 The global impact of dementia an analysis of prevalence, incidence, cost and trends.

  12. GBD (2016) Dementia Collaborators A: Global, regional, and national burden of Alzheimer’s disease and other dementias, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol 2019(18):88–106

    Google Scholar 

  13. WHO (2003) World Health Report 2003-Global burden of dementia in year 2000. Geneva

  14. Dorszewska J, Prendecki M, Oczkowska A, Dezor M, Kozubski W (2016) Molecular basis of familial and sporadic Alzheimer’s disease. Curr Alzheimer Res 13:952–963

    Article  CAS  PubMed  Google Scholar 

  15. Huang YA, Zhou B, Wernig M, Sudhof TC (2017) ApoE2, ApoE3, and ApoE4 differentially stimulate APP transcription and abeta secretion. Cell 168:427–441 e421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ittner LM, Gotz J (2011) Amyloid-beta and tau--a toxic pas de deux in Alzheimer’s disease. Nat Rev Neurosci 12:65–72

    Article  CAS  PubMed  Google Scholar 

  17. Tanzi RE, Bertram L (2005) Twenty years of the Alzheimer’s disease amyloid hypothesis: a genetic perspective. Cell 120:545–555

    Article  CAS  PubMed  Google Scholar 

  18. Hardy JA, Higgins GA (1992) Alzheimer’s disease: the amyloid cascade hypothesis. Science 256:184–185

    Article  CAS  PubMed  Google Scholar 

  19. Lesne S, Koh MT, Kotilinek L, Kayed R, Glabe CG, Yang A, Gallagher M, Ashe KH (2006) A specific amyloid-beta protein assembly in the brain impairs memory. Nature 440:352–357

    Article  CAS  PubMed  Google Scholar 

  20. Kim J, Chakrabarty P, Hanna A, March A, Dickson DW, Borchelt DR, Golde T, Janus C (2013) Normal cognition in transgenic BRI2-Abeta mice. Mol Neurodegener 8:15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kim J, Onstead L, Randle S, Price R, Smithson L, Zwizinski C, Dickson DW, Golde T et al (2007) Abeta40 inhibits amyloid deposition in vivo. J Neurosci 27:627–633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chetelat G, La Joie R, Villain N, Perrotin A, de La Sayette V, Eustache F, Vandenberghe R (2013) Amyloid imaging in cognitively normal individuals, at-risk populations and preclinical Alzheimer’s disease. Neuroimage Clin 2:356–365

    Article  PubMed  PubMed Central  Google Scholar 

  23. Godyn J, Jonczyk J, Panek D, Malawska B (2016) Therapeutic strategies for Alzheimer’s disease in clinical trials. Pharmacol Rep 68:127–138

    Article  CAS  PubMed  Google Scholar 

  24. Egan MF, Kost J, Voss T, Mukai Y, Aisen PS, Cummings JL, Tariot PN, Vellas B et al (2019) Randomized trial of verubecestat for prodromal Alzheimer’s disease. N Engl J Med 380:1408–1420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Salloway S, Sperling R, Fox NC, Blennow K, Klunk W, Raskind M, Sabbagh M, Honig LS et al (2014) Two phase 3 trials of bapineuzumab in mild-to-moderate Alzheimer’s disease. N Engl J Med 370:322–333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Doody RS, Thomas RG, Farlow M, Iwatsubo T, Vellas B, Joffe S, Kieburtz K, Raman R et al (2014) Phase 3 trials of solanezumab for mild-to-moderate Alzheimer’s disease. N Engl J Med 370:311–321

    Article  CAS  PubMed  Google Scholar 

  27. Loureiro JC, Pais MV, Stella F, Radanovic M, Teixeira AL, Forlenza OV, de Souza LC (2020) Passive antiamyloid immunotherapy for Alzheimer’s disease. Curr Opin Psychiatry 33:284–291

    Article  PubMed  Google Scholar 

  28. Yang T, Dang Y, Ostaszewski B, Mengel D, Steffen V, Rabe C, Bittner T, Walsh DM et al (2019) Target engagement in an Alzheimer trial: crenezumab lowers amyloid beta oligomers in cerebrospinal fluid. Ann Neurol 86:215–224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Green DR, Galluzzi L, Kroemer G (2011) Mitochondria and the autophagy-inflammation-cell death axis in organismal aging. Science 333:1109–1112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. LaFrance R, Brustovetsky N, Sherburne C, Delong D, Dubinsky JM (2005) Age-related changes in regional brain mitochondria from Fischer 344 rats. Aging Cell 4:139–145

    Article  CAS  PubMed  Google Scholar 

  31. Navarro A, Boveris A (2010) Brain mitochondrial dysfunction in aging, neurodegeneration, and Parkinson’s disease. Front Aging Neurosci 2:34

  32. Reddy PH, Manczak M, Yin X (2017) Mitochondria-division inhibitor 1 protects against amyloid-beta induced mitochondrial fragmentation and synaptic damage in Alzheimer’s disease. J Alzheimers Dis 58:147–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gibson GE, Starkov A, Blass JP, Ratan RR, Beal MF (1802) Cause and consequence: mitochondrial dysfunction initiates and propagates neuronal dysfunction, neuronal death and behavioral abnormalities in age-associated neurodegenerative diseases. Biochim Biophys Acta 2010:122–134

    Google Scholar 

  34. Cai Q, Tammineni P (2017) Mitochondrial aspects of synaptic dysfunction in Alzheimer’s disease. J Alzheimers Dis 57:1087–1103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Guo L, Tian J, Du H (2017) Mitochondrial dysfunction and synaptic transmission failure in Alzheimer’s disease. J Alzheimers Dis 57:1071–1086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Du H, Guo L, Yan S, Sosunov AA, McKhann GM, Yan SS (2010) Early deficits in synaptic mitochondria in an Alzheimer’s disease mouse model. Proc Natl Acad Sci U S A 107:18670–18675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Pickett EK, Rose J, McCrory C, McKenzie CA, King D, Smith C, Gillingwater TH, Henstridge CM et al (2018) Region-specific depletion of synaptic mitochondria in the brains of patients with Alzheimer’s disease. Acta Neuropathol 136:747–757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yao J, Irwin RW, Zhao L, Nilsen J, Hamilton RT, Brinton RD (2009) Mitochondrial bioenergetic deficit precedes Alzheimer’s pathology in female mouse model of Alzheimer’s disease. Proc Natl Acad Sci U S A 106:14670–14675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mao P, Manczak M, Calkins MJ, Truong Q, Reddy TP, Reddy AP, Shirendeb U, Lo HH et al (2012) Mitochondria-targeted catalase reduces abnormal APP processing, amyloid beta production and BACE1 in a mouse model of Alzheimer’s disease: implications for neuroprotection and lifespan extension. Hum Mol Genet 21:2973–2990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Swerdlow RH, Khan SM (2004) A “mitochondrial cascade hypothesis” for sporadic Alzheimer’s disease. Med Hypotheses 63:8–20

    Article  CAS  PubMed  Google Scholar 

  41. Swerdlow RH, Burns JM, Khan SM (1842) The Alzheimer’s disease mitochondrial cascade hypothesis: progress and perspectives. Biochim Biophys Acta 2014:1219–1231

    Google Scholar 

  42. Khan SM, Cassarino DS, Abramova NN, Keeney PM, Borland MK, Trimmer PA, Krebs CT, Bennett JC et al (2000) Alzheimer’s disease cybrids replicate beta-amyloid abnormalities through cell death pathways. Ann Neurol 48:148–155

    Article  CAS  PubMed  Google Scholar 

  43. Scheffler K, Krohn M, Dunkelmann T, Stenzel J, Miroux B, Ibrahim S, von Bohlen Und Halbach O, Heinze HJ et al (2012) Mitochondrial DNA polymorphisms specifically modify cerebral beta-amyloid proteostasis. Acta Neuropathol 124:199–208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Leuner K, Schutt T, Kurz C, Eckert SH, Schiller C, Occhipinti A, Mai S, Jendrach M et al (2012) Mitochondrion-derived reactive oxygen species lead to enhanced amyloid beta formation. Antioxid Redox Signal 16:1421–1433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kukreja L, Kujoth GC, Prolla TA, Van Leuven F, Vassar R (2014) Increased mtDNA mutations with aging promotes amyloid accumulation and brain atrophy in the APP/Ld transgenic mouse model of Alzheimer’s disease. Mol Neurodegener 9:16

    Article  PubMed  PubMed Central  Google Scholar 

  46. Su B, Wang X, Lee HG, Tabaton M, Perry G, Smith MA, Zhu X (2010) Chronic oxidative stress causes increased tau phosphorylation in M17 neuroblastoma cells. Neurosci Lett 468:267–271

    Article  CAS  PubMed  Google Scholar 

  47. Pagani L, Eckert A (2011) Amyloid-Beta interaction with mitochondria. Int J Alzheimers Dis 2011:925050

    PubMed  PubMed Central  Google Scholar 

  48. Martin-Maestro P, Gargini R, Garcia E, Simon D, Avila J, Garcia-Escudero V (2019) Mitophagy failure in APP and tau overexpression model of Alzheimer’s disease. J Alzheimers Dis 70:525–540

    Article  PubMed  Google Scholar 

  49. Manczak M, Calkins MJ, Reddy PH (2011) Impaired mitochondrial dynamics and abnormal interaction of amyloid beta with mitochondrial protein Drp1 in neurons from patients with Alzheimer’s disease: implications for neuronal damage. Hum Mol Genet 20:2495–2509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Cho DH, Nakamura T, Fang J, Cieplak P, Godzik A, Gu Z, Lipton SA (2009) S-nitrosylation of Drp1 mediates beta-amyloid-related mitochondrial fission and neuronal injury. Science 324:102–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sanz-Blasco S, Valero RA, Rodriguez-Crespo I, Villalobos C, Nunez L (2008) Mitochondrial Ca2+ overload underlies A beta oligomers neurotoxicity providing an unexpected mechanism of neuroprotection by NSAIDs. PLoS One 3:e2718

    Article  PubMed  PubMed Central  Google Scholar 

  52. Cardoso SM, Santos S, Swerdlow RH, Oliveira CR (2001) Functional mitochondria are required for amyloid beta-mediated neurotoxicity. FASEB J 15:1439–1441

    Article  CAS  PubMed  Google Scholar 

  53. Mattson MP, Gleichmann M, Cheng A (2008) Mitochondria in neuroplasticity and neurological disorders. Neuron 60:748–766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Mossmann D, Vogtle FN, Taskin AA, Teixeira PF, Ring J, Burkhart JM, Burger N, Pinho CM et al (2014) Amyloid-beta peptide induces mitochondrial dysfunction by inhibition of preprotein maturation. Cell Metab 20:662–669

    Article  CAS  PubMed  Google Scholar 

  55. Todd K, Fossati S, Ghiso J, Rostagno A (1842) Mitochondrial dysfunction induced by a post-translationally modified amyloid linked to a familial mutation in an alternative model of neurodegeneration. Biochim Biophys Acta 2014:2457–2467

    Google Scholar 

  56. Devi L, Prabhu BM, Galati DF, Avadhani NG, Anandatheerthavarada HK (2006) Accumulation of amyloid precursor protein in the mitochondrial import channels of human Alzheimer’s disease brain is associated with mitochondrial dysfunction. J Neurosci 26:9057–9068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Vossel KA, Zhang K, Brodbeck J, Daub AC, Sharma P, Finkbeiner S, Cui B, Mucke L (2010) Tau reduction prevents Abeta-induced defects in axonal transport. Science 330:198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Dixit R, Ross JL, Goldman YE, Holzbaur EL (2008) Differential regulation of dynein and kinesin motor proteins by tau. Science 319:1086–1089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lin MT, Beal MF (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443:787–795

    Article  CAS  PubMed  Google Scholar 

  60. Akbar M, Essa MM, Daradkeh G, Abdelmegeed MA, Choi Y, Mahmood L, Song BJ (2016) Mitochondrial dysfunction and cell death in neurodegenerative diseases through nitroxidative stress. Brain Res 1637:34–55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Nakamura T, Cho DH, Lipton SA (2012) Redox regulation of protein misfolding, mitochondrial dysfunction, synaptic damage, and cell death in neurodegenerative diseases. Exp Neurol 238:12–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Mizushima N, Yoshimori T, Levine B (2010) Methods in mammalian autophagy research. Cell 140:313–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Maday S, Wallace KE, Holzbaur EL (2012) Autophagosomes initiate distally and mature during transport toward the cell soma in primary neurons. J Cell Biol 196:407–417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lee S, Sato Y, Nixon RA (2011) Lysosomal proteolysis inhibition selectively disrupts axonal transport of degradative organelles and causes an Alzheimer’s-like axonal dystrophy. J Neurosci 31:7817–7830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Yue Z (2007) Regulation of neuronal autophagy in axon: implication of autophagy in axonal function and dysfunction/degeneration. Autophagy 3:139–141

    Article  CAS  PubMed  Google Scholar 

  66. Xie R, Nguyen S, McKeehan WL, Liu L (2010) Acetylated microtubules are required for fusion of autophagosomes with lysosomes. BMC Cell Biol 11:89

    Article  PubMed  PubMed Central  Google Scholar 

  67. Cuervo AM (2008) Autophagy and aging: keeping that old broom working. Trends Genet: TIG 24:604–612

    Article  CAS  PubMed  Google Scholar 

  68. Rubinsztein DC, Marino G, Kroemer G (2011) Autophagy and aging. Cell 146:682–695

    Article  CAS  PubMed  Google Scholar 

  69. Glatigny M, Moriceau S, Rivagorda M, Ramos-Brossier M, Nascimbeni AC, Lante F, Shanley MR, Boudarene N et al (2019) Autophagy is required for memory formation and reverses age-related memory decline. Curr Biol 29:435

    Article  CAS  PubMed  Google Scholar 

  70. Lipinski MM, Zheng B, Lu T, Yan Z, Py BF, Ng A, Xavier RJ, Li C et al (2010) Genome-wide analysis reveals mechanisms modulating autophagy in normal brain aging and in Alzheimer’s disease. Proc Natl Acad Sci U S A 107:14164–14169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Chang JT, Kumsta C, Hellman AB, Adams LM, Hansen M (2017) Spatiotemporal regulation of autophagy during Caenorhabditis elegans aging. eLife 6:e18459

  72. Nixon RA (2013) The role of autophagy in neurodegenerative disease. Nat Med 19:983–997

    Article  CAS  PubMed  Google Scholar 

  73. Ravikumar B, Duden R, Rubinsztein DC (2002) Aggregate-prone proteins with polyglutamine and polyalanine expansions are degraded by autophagy. Hum Mol Genet 11:1107–1117

    Article  CAS  PubMed  Google Scholar 

  74. Levine B, Kroemer G (2008) Autophagy in the pathogenesis of disease. Cell 132:27–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Hara T, Nakamura K, Matsui M, Yamamoto A, Nakahara Y, Suzuki-Migishima R, Yokoyama M, Mishima K et al (2006) Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441:885–889

    Article  CAS  PubMed  Google Scholar 

  76. Komatsu M, Waguri S, Chiba T, Murata S, Iwata J, Tanida I, Ueno T, Koike M et al (2006) Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441:880–884

    Article  CAS  PubMed  Google Scholar 

  77. Jiang X, Jin T, Zhang H, Miao J, Zhao X, Su Y, Zhang Y (2019) Current progress of mitochondrial quality control pathways underlying the pathogenesis of Parkinson’s disease. Oxidative Med Cell Longev 2019:4578462

    Article  Google Scholar 

  78. Leites EP, Morais VA (2018) Mitochondrial quality control pathways: PINK1 acts as a gatekeeper. Biochem Biophys Res Commun 500:45–50

    Article  CAS  PubMed  Google Scholar 

  79. Hamacher-Brady A, Brady NR (2016) Mitophagy programs: mechanisms and physiological implications of mitochondrial targeting by autophagy. Cell Mol Life Sci 73:775–795

    Article  CAS  PubMed  Google Scholar 

  80. Matsuda N, Sato S, Shiba K, Okatsu K, Saisho K, Gautier CA, Sou YS, Saiki S et al (2010) PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. J Cell Biol 189:211–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Lazarou M, Sliter DA, Kane LA, Sarraf SA, Wang C, Burman JL, Sideris DP, Fogel AI et al (2015) The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature 524:309–314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Nguyen TN, Padman BS, Lazarou M (2016) Deciphering the molecular signals of PINK1/Parkin mitophagy. Trends Cell Biol 26:733–744

    Article  CAS  PubMed  Google Scholar 

  83. Garcia-Prat L, Martinez-Vicente M, Perdiguero E, Ortet L, Rodriguez-Ubreva J, Rebollo E, Ruiz-Bonilla V, Gutarra S et al (2016) Autophagy maintains stemness by preventing senescence. Nature 529:37–42

    Article  CAS  PubMed  Google Scholar 

  84. Sun N, Yun J, Liu J, Malide D, Liu C, Rovira II, Holmstrom KM, Fergusson MM et al (2015) Measuring in vivo mitophagy. Mol Cell 60:685–696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Ye X, Sun X, Starovoytov V, Cai Q (2015) Parkin-mediated mitophagy in mutant hAPP neurons and Alzheimer’s disease patient brains. Hum Mol Genet 24:2938–2951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Bordi M, Berg MJ, Mohan PS, Peterhoff CM, Alldred MJ, Che S, Ginsberg SD, Nixon RA (2016) Autophagy flux in CA1 neurons of Alzheimer hippocampus: Increased induction overburdens failing lysosomes to propel neuritic dystrophy. Autophagy 12:2467–2483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Nixon RA, Wegiel J, Kumar A, Yu WH, Peterhoff C, Cataldo A, Cuervo AM (2005) Extensive involvement of autophagy in Alzheimer disease: an immuno-electron microscopy study. J Neuropathol Exp Neurol 64:113–122

    Article  PubMed  Google Scholar 

  88. Cai Q, Tammineni P (2016) Alterations in mitochondrial quality control in Alzheimer’s disease. Front Cell Neurosci 10:24

    Article  PubMed  PubMed Central  Google Scholar 

  89. Nixon RA, Yang DS (2011) Autophagy failure in Alzheimer’s disease--locating the primary defect. Neurobiol Dis 43:38–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Lee JH, Yu WH, Kumar A, Lee S, Mohan PS, Peterhoff CM, Wolfe DM, Martinez-Vicente M et al (2010) Lysosomal proteolysis and autophagy require presenilin 1 and are disrupted by Alzheimer-related PS1 mutations. Cell 141:1146–1158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Coffey EE, Beckel JM, Laties AM, Mitchell CH (2014) Lysosomal alkalization and dysfunction in human fibroblasts with the Alzheimer’s disease-linked presenilin 1 A246E mutation can be reversed with cAMP. Neuroscience 263:111–124

    Article  CAS  PubMed  Google Scholar 

  92. Ji ZS, Mullendorff K, Cheng IH, Miranda RD, Huang Y, Mahley RW (2006) Reactivity of apolipoprotein E4 and amyloid beta peptide: lysosomal stability and neurodegeneration. J Biol Chem 281:2683–2692

    Article  CAS  PubMed  Google Scholar 

  93. Du F, Yu Q, Yan S, Hu G, Lue LF, Walker DG, Wu L, Yan SF et al (2017) PINK1 signalling rescues amyloid pathology and mitochondrial dysfunction in Alzheimer’s disease. Brain 140:3233–3251

    Article  PubMed  PubMed Central  Google Scholar 

  94. Spilman P, Podlutskaya N, Hart MJ, Debnath J, Gorostiza O, Bredesen D, Richardson A, Strong R et al (2010) Inhibition of mTOR by rapamycin abolishes cognitive deficits and reduces amyloid-beta levels in a mouse model of Alzheimer’s disease. PLoS One 5:e9979

    Article  PubMed  PubMed Central  Google Scholar 

  95. Sliter DA, Martinez J, Hao L, Chen X, Sun N, Fischer TD, Burman JL, Li Y et al (2018) Parkin and PINK1 mitigate STING-induced inflammation. Nature 561:258–262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Pickrell AM, Youle RJ (2015) The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson’s disease. Neuron 85:257–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. He CC, Klionsky DJ (2009) Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet 43:67–93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Kim J, Kundu M, Viollet B, Guan KL (2011) AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol 13:132–U171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. O’Neill C (2013) PI3-kinase/Akt/mTOR signaling: impaired on/off switches in aging, cognitive decline and Alzheimer’s disease. Exp Gerontol 48:647–653

    Article  Google Scholar 

  100. Perluigi M, Di Domenico F, Butterfield DA (2015) mTOR signaling in aging and neurodegeneration: at the crossroad between metabolism dysfunction and impairment of autophagy. Neurobiol Dis 84:39–49

    Article  CAS  PubMed  Google Scholar 

  101. Vartak RS, Rodin A, Oddo S (2019) Differential activation of the mTOR/autophagy pathway predicts cognitive performance in APP/PS1 mice. Neurobiol Aging 83:105–113

    Article  CAS  PubMed  Google Scholar 

  102. Bove J, Martinez-Vicente M, Vila M (2011) Fighting neurodegeneration with rapamycin: mechanistic insights. Nat Rev Neurosci 12:437–452

    Article  CAS  PubMed  Google Scholar 

  103. Caccamo A, Majumder S, Richardson A, Strong R, Oddo S (2010) Molecular interplay between mammalian target of rapamycin (mTOR), amyloid-beta, and Tau: effects on cognitive impairments. J Biol Chem 285:13107–13120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Tramutola A, Triplett JC, Di Domenico F, Niedowicz DM, Murphy MP, Coccia R, Perluigi M, Butterfield DA (2015) Alteration of mTOR signaling occurs early in the progression of Alzheimer disease (AD): analysis of brain from subjects with pre-clinical AD, amnestic mild cognitive impairment and late-stage AD. J Neurochem 133:739–749

    Article  CAS  PubMed  Google Scholar 

  105. Roczniak-Ferguson A, Petit CS, Froehlich F, Qian S, Ky J, Angarola B, Walther TC, Ferguson SM (2012) The transcription factor TFEB Links mTORC1 signaling to transcriptional control of lysosome homeostasis. Sci Signal 5:42

  106. Nezich CL, Wang C, Fogel AI, Youle RJ (2015) MiT/TFE transcription factors are activated during mitophagy downstream of Parkin and Atg5. J Cell Biol 210:435–450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Tan S, Yu CY, Sim ZW, Low ZS, Lee B, See F, Min N, Gautam A et al (2019) Pomegranate activates TFEB to promote autophagy-lysosomal fitness and mitophagy. Sci Rep 9:727

    Article  PubMed  PubMed Central  Google Scholar 

  108. Tsunemi T, Ashe TD, Morrison BE, Soriano KR, Au J, Roque RA, Lazarowski ER, Damian VA et al (2012) PGC-1alpha rescues Huntington’s disease proteotoxicity by preventing oxidative stress and promoting TFEB function. Sci Transl Med 4:142ra197

    Article  Google Scholar 

  109. Polito VA, Li H, Martini-Stoica H, Wang B, Yang L, Xu Y, Swartzlander DB, Palmieri M et al (2014) Selective clearance of aberrant tau proteins and rescue of neurotoxicity by transcription factor EB. EMBO Mol Med 6:1142–1160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Xiao Q, Yan P, Ma X, Liu H, Perez R, Zhu A, Gonzales E, Burchett JM et al (2014) Enhancing astrocytic lysosome biogenesis facilitates Abeta clearance and attenuates amyloid plaque pathogenesis. J Neurosci 34:9607–9620

    Article  PubMed  PubMed Central  Google Scholar 

  111. Xiao Q, Yan P, Ma X, Liu H, Perez R, Zhu A, Gonzales E, Tripoli DL et al (2015) Neuronal-targeted TFEB accelerates lysosomal degradation of APP, reducing Abeta generation and amyloid plaque pathogenesis. J Neurosci 35:12137–12151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Song JX, Malampati S, Zeng Y, Durairajan SSK, Yang CB, Tong BC, Iyaswamy A, Shang WB et al (2020) A small molecule transcription factor EB activator ameliorates beta-amyloid precursor protein and Tau pathology in Alzheimer’s disease models. Aging Cell 19:e13069

    Article  CAS  PubMed  Google Scholar 

  113. Settembre C, Medina DL (2015) TFEB and the CLEAR network. Methods Cell Biol 126:45–62

    Article  CAS  PubMed  Google Scholar 

  114. Zhang XL, Cheng XP, Yu L, Yang JS, Calvo R, Patnaik S, Hu X, Gao Q et al (2016) MCOLN1 is a ROS sensor in lysosomes that regulates autophagy. Nat Commun 7:12109

  115. Medina DL, Di Paola S, Peluso I, Armani A, De Stefani D, Venditti R, Montefusco S, Scotto-Rosato A et al (2015) Lysosomal calcium signalling regulates autophagy through calcineurin and TFEB. Nat Cell Biol 17:288–299

    Article  PubMed  PubMed Central  Google Scholar 

  116. Puertollano R, Ferguson SM, Brugarolas J, Ballabio A (2018) The complex relationship between TFEB transcription factor phosphorylation and subcellular localization. EMBO J 37:e98804

  117. Sekar P, Huang DY, Hsieh SL, Chang SF, Lin WW (2018) AMPK-dependent and independent actions of P2X7 in regulation of mitochondrial and lysosomal functions in microglia. Cell Commun Signal 16:83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Boland B, Yu WH, Corti O, Mollereau B, Henriques A, Bezard E, Pastores GM, Rubinsztein DC et al (2018) Promoting the clearance of neurotoxic proteins in neurodegenerative disorders of ageing. Nat Rev Drug Discov 17:660–688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Ravikumar B, Berger Z, Vacher C, O’Kane CJ, Rubinsztein DC (2006) Rapamycin pre-treatment protects against apoptosis. Hum Mol Genet 15:1209–1216

    Article  CAS  PubMed  Google Scholar 

  120. Boland B, Kumar A, Lee S, Platt FM, Wegiel J, Yu WH, Nixon RA (2008) Autophagy induction and autophagosome clearance in neurons: relationship to autophagic pathology in Alzheimer’s disease. J Neurosci 28:6926–6937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Napoletano F, Baron O, Vandenabeele P, Mollereau B, Fanto M (2019) Intersections between regulated cell death and autophagy. Trends Cell Biol 29:323–338

  122. Gibson GE, Shi Q (2010) A mitocentric view of Alzheimer’s disease suggests multi-faceted treatments. J Alzheimers Dis 20(Suppl 2):S591–S607

    Article  PubMed  PubMed Central  Google Scholar 

  123. Zhang L, Guo XQ, Chu JF, Zhang X, Yan ZR, Li YZ (2015) Potential hippocampal genes and pathways involved in Alzheimer’s disease: a bioinformatic analysis. Genet Mol Res 14:7218–7232

    Article  CAS  PubMed  Google Scholar 

  124. Sheng ZH, Cai Q (2012) Mitochondrial transport in neurons: impact on synaptic homeostasis and neurodegeneration. Nat Rev Neurosci 13:77–93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Dorn GW 2nd (2019) Evolving Concepts of Mitochondrial Dynamics. Annu Rev Physiol 81:1–17

    Article  CAS  PubMed  Google Scholar 

  126. Palikaras K, Lionaki E, Tavernarakis N (2018) Mechanisms of mitophagy in cellular homeostasis, physiology and pathology. Nat Cell Biol 20:1013–1022

    Article  CAS  PubMed  Google Scholar 

  127. Chan DC (2012) Fusion and fission: interlinked processes critical for mitochondrial health. Annu Rev Genet 46:265–287

    Article  CAS  PubMed  Google Scholar 

  128. Pryde KR, Smith HL, Chau KY, Schapira AH (2016) PINK1 disables the anti-fission machinery to segregate damaged mitochondria for mitophagy. J Cell Biol 213:163–171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Xian H, Liou YC (2019) Loss of MIEF1/MiD51 confers susceptibility to BAX-mediated cell death and PINK1-PRKN-dependent mitophagy. Autophagy 15:2107–2125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Yamada T, Dawson TM, Yanagawa T, Iijima M, Sesaki H (2019) SQSTM1/p62 promotes mitochondrial ubiquitination independently of PINK1 and PRKN/parkin in mitophagy. Autophagy 15:2012–2018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Han HL, Tan JDO, Wang RX, Wan HD, He YH, Yan XX, Guo JF, Gao QT et al (2020) PINK1 phosphorylates Drp1(S616) to regulate mitophagy-independent mitochondrial dynamics. EMBO Rep 21:e48686

  132. Wang X, Su B, Lee HG, Li X, Perry G, Smith MA, Zhu X (2009) Impaired balance of mitochondrial fission and fusion in Alzheimer’s disease. J Neurosci 29:9090–9103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Gan XQ, Huang SB, Wu L, Wang YF, Hu G, Li GY, Zhang HJ, Yu HY et al (1842) Inhibition of ERK-DLP1 signaling and mitochondrial division alleviates mitochondrial dysfunction in Alzheimer’s disease cybrid cell. BBA Mol Basis Dis 2014:220–231

    Google Scholar 

  134. Tyumentsev MA, Stefanova NA, Muraleva NA, Rumyantseva YV, Kiseleva E, Vavilin VA, Kolosova NG (2018) Mitochondrial dysfunction as a predictor and driver of Alzheimer’s disease-like pathology in OXYS rats. J Alzheimers Dis 63:1075–1088

    Article  CAS  PubMed  Google Scholar 

  135. Zhang L, Trushin S, Christensen TA, Bachmeier BV, Gateno B, Schroeder A, Yao J, Itoh K et al (2016) Altered brain energetics induces mitochondrial fission arrest in Alzheimer’s disease. Sci Rep 6:18725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Gan X, Wu L, Huang S, Zhong C, Shi H, Li G, Yu H, Howard Swerdlow R et al (2014) Oxidative stress-mediated activation of extracellular signal-regulated kinase contributes to mild cognitive impairment-related mitochondrial dysfunction. Free Radic Biol Med 75:230–240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Xu LL, Shen Y, Wang X, Wei LF, Wang P, Yang H, Wang CF, Xie ZH et al (2017) Mitochondrial dynamics changes with age in an APPsw/PS1dE9 mouse model of Alzheimer’s disease. Neuroreport 28:222–228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Manczak M, Reddy PH (2012) Abnormal interaction between the mitochondrial fission protein Drp1 and hyperphosphorylated tau in Alzheimer’s disease neurons: implications for mitochondrial dysfunction and neuronal damage. Hum Mol Genet 21:2538–2547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Reddy PH, Oliver DM (2019) Amyloid beta and phosphorylated tau-induced defective autophagy and mitophagy in Alzheimer’s disease. Cells 8:488

  140. Briston T, Hicks AR (2018) Mitochondrial dysfunction and neurodegenerative proteinopathies: mechanisms and prospects for therapeutic intervention. Biochem Soc Trans 46:829–842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Wang W, Yin J, Ma X, Zhao F, Siedlak SL, Wang Z, Torres S, Fujioka H et al (2017) Inhibition of mitochondrial fragmentation protects against Alzheimer’s disease in rodent model. Hum Mol Genet 26:4118–4131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Wang X, Su B, Siedlak SL, Moreira PI, Fujioka H, Wang Y, Casadesus G, Zhu X (2008) Amyloid-beta overproduction causes abnormal mitochondrial dynamics via differential modulation of mitochondrial fission/fusion proteins. Proc Natl Acad Sci U S A 105:19318–19323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Baek SH, Park SJ, Jeong JI, Kim SH, Han J, Kyung JW, Baik SH, Choi Y et al (2017) Inhibition of Drp1 ameliorates synaptic depression, Abeta deposition, and cognitive impairment in an Alzheimer’s disease model. J Neurosci 37:5099–5110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. LaFerla FM (2002) Calcium dyshomeostasis and intracellular signalling in Alzheimer’s disease. Nat Rev Neurosci 3:862–872

    Article  CAS  PubMed  Google Scholar 

  145. Bezprozvanny I, Mattson MP (2008) Neuronal calcium mishandling and the pathogenesis of Alzheimer’s disease. Trends Neurosci 31:454–463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Mattson MP, Chan SL (2003) Neuronal and glial calcium signaling in Alzheimer’s disease. Cell Calcium 34:385–397

    Article  CAS  PubMed  Google Scholar 

  147. Suzuki K, Sorimachi H, Yoshizawa T, Kinbara K, Ishiura S (1995) Calpain: novel family members, activation, and physiologic function. Biol Chem Hoppe Seyler 376:523–529

    CAS  PubMed  Google Scholar 

  148. Perrin BJ, Huttenlocher A (2002) Calpain. Int J Biochem Cell Biol 34:722–725

    Article  CAS  PubMed  Google Scholar 

  149. Mercken M, Grynspan F, Nixon RA (1995) Differential sensitivity to proteolysis by brain calpain of adult human tau, fetal human tau and PHF-tau. FEBS Lett 368:10–14

    Article  CAS  PubMed  Google Scholar 

  150. Yang LS, Ksiezak-Reding H (1995) Calpain-induced proteolysis of normal human tau and tau associated with paired helical filaments. Eur J Biochem 233:9–17

    Article  CAS  PubMed  Google Scholar 

  151. Atherton J, Kurbatskaya K, Bondulich M, Croft CL, Garwood CJ, Chhabra R, Wray S, Jeromin A et al (2014) Calpain cleavage and inactivation of the sodium calcium exchanger-3 occur downstream of Abeta in Alzheimer’s disease. Aging Cell 13:49–59

    Article  CAS  PubMed  Google Scholar 

  152. Jin N, Yin X, Yu D, Cao M, Gong CX, Iqbal K, Ding F, Gu X et al (2015) Truncation and activation of GSK-3beta by calpain I: a molecular mechanism links to tau hyperphosphorylation in Alzheimer’s disease. Sci Rep 5:8187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Saito K, Elce JS, Hamos JE, Nixon RA (1993) Widespread activation of calcium-activated neutral proteinase (calpain) in the brain in Alzheimer disease: a potential molecular basis for neuronal degeneration. Proc Natl Acad Sci U S A 90:2628–2632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Taniguchi S, Fujita Y, Hayashi S, Kakita A, Takahashi H, Murayama S, Saido TC, Hisanaga S et al (2001) Calpain-mediated degradation of p35 to p25 in postmortem human and rat brains. FEBS Lett 489:46–50

    Article  CAS  PubMed  Google Scholar 

  155. Wang W, Zhang F, Li L, Tang F, Siedlak SL, Fujioka H, Liu Y, Su B et al (2015) MFN2 couples glutamate excitotoxicity and mitochondrial dysfunction in motor neurons. J Biol Chem 290:168–182

    Article  CAS  PubMed  Google Scholar 

  156. Jiang S, Shao C, Tang F, Wang W, Zhu X (2019) Dynamin-like protein 1 cleavage by calpain in Alzheimer’s disease. Aging Cell 18:e12912

    Article  PubMed  PubMed Central  Google Scholar 

  157. Prinz M, Priller J, Sisodia SS, Ransohoff RM (2011) Heterogeneity of CNS myeloid cells and their roles in neurodegeneration. Nat Neurosci 14:1227–1235

    Article  CAS  PubMed  Google Scholar 

  158. Lucin KM, Wyss-Coray T (2009) Immune activation in brain aging and neurodegeneration: too much or too little? Neuron 64:110–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Wyss-Coray T, Mucke L (2002) Inflammation in neurodegenerative disease--a double-edged sword. Neuron 35:419–432

    Article  CAS  PubMed  Google Scholar 

  160. Giunta B, Fernandez F, Nikolic WV, Obregon D, Rrapo E, Town T, Tan J (2008) Inflammaging as a prodrome to Alzheimer’s disease. J Neuroinflammation 5:51

    Article  PubMed  PubMed Central  Google Scholar 

  161. Franceschi C, Garagnani P, Vitale G, Capri M, Salvioli S (2017) Inflammaging and ‘Garb-aging’. Trends Endocrinol Metab 28:199–212

    Article  CAS  PubMed  Google Scholar 

  162. Mosher KI, Wyss-Coray T (2014) Microglial dysfunction in brain aging and Alzheimer’s disease. Biochem Pharmacol 88:594–604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Ojala J, Alafuzoff I, Herukka SK, van Groen T, Tanila H, Pirttila T (2009) Expression of interleukin-18 is increased in the brains of Alzheimer’s disease patients. Neurobiol Aging 30:198–209

    Article  CAS  PubMed  Google Scholar 

  164. Prolla TA (2002) DNA microarray analysis of the aging brain. Chem Senses 27:299–306

    Article  CAS  PubMed  Google Scholar 

  165. Shimada K, Crother TR, Karlin J, Dagvadorj J, Chiba N, Chen S, Ramanujan VK, Wolf AJ et al (2012) Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis. Immunity 36:401–414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Zhong Z, Liang S, Sanchez-Lopez E, He F, Shalapour S, Lin XJ, Wong J, Ding S et al (2018) New mitochondrial DNA synthesis enables NLRP3 inflammasome activation. Nature 560:198–203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Heneka MT, Kummer MP, Stutz A, Delekate A, Schwartz S, Vieira-Saecker A, Griep A, Axt D et al (2013) NLRP3 is activated in Alzheimer’s disease and contributes to pathology in APP/PS1 mice. Nature 493:674–678

    Article  CAS  PubMed  Google Scholar 

  168. Trautmann A (2009) Extracellular ATP in the immune system: more than just a “danger signal”. Sci Signal 2:pe6

    Article  PubMed  Google Scholar 

  169. Heneka MT, Kummer MP, Latz E (2014) Innate immune activation in neurodegenerative disease. Nat Rev Immunol 14:463–477

    Article  CAS  PubMed  Google Scholar 

  170. Zhong ZY, Umemura A, Sanchez-Lopez E, Liang S, Shalapour S, Wong J, He F, Boassa D et al (2016) NF-kappa B restricts inflammasome activation via elimination of damaged mitochondria. Cell 164:896–910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Nakahira K, Haspel JA, Rathinam VA, Lee SJ, Dolinay T, Lam HC, Englert JA, Rabinovitch M et al (2011) Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat Immunol 12:222–230

    Article  CAS  PubMed  Google Scholar 

  172. Block ML, Zecca L, Hong JS (2007) Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci 8:57–69

    Article  CAS  PubMed  Google Scholar 

  173. Yan Y, Finkel T (2017) Autophagy as a regulator of cardiovascular redox homeostasis. Free Radic Biol Med 109:108–113

    Article  CAS  PubMed  Google Scholar 

  174. Radi E, Formichi P, Battisti C, Federico A (2014) Apoptosis and oxidative stress in neurodegenerative diseases. J Alzheimers Dis 42(Suppl 3):S125–S152

    Article  PubMed  Google Scholar 

  175. Zhao Y, Zhao B (2013) Oxidative stress and the pathogenesis of Alzheimer’s disease. Oxidative Med Cell Longev 2013:316523

    Article  Google Scholar 

  176. Wang X, Wang W, Li L, Perry G, Lee HG, Zhu X (1842) Oxidative stress and mitochondrial dysfunction in Alzheimer’s disease. Biochim Biophys Acta 2014:1240–1247

    Google Scholar 

  177. Freeman L, Guo H, David CN, Brickey WJ, Jha S, Ting JP (2017) NLR members NLRC4 and NLRP3 mediate sterile inflammasome activation in microglia and astrocytes. J Exp Med 214:1351–1370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Sun N, Youle RJ, Finkel T (2016) The mitochondrial basis of aging. Mol Cell 61:654–666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Halle A, Hornung V, Petzold GC, Stewart CR, Monks BG, Reinheckel T, Fitzgerald KA, Latz E et al (2008) The NALP3 inflammasome is involved in the innate immune response to amyloid-beta. Nat Immunol 9:857–865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Venegas C, Heneka MT (2019) Inflammasome-mediated innate immunity in Alzheimer’s disease. FASEB J 33:13075–13084

    Article  CAS  PubMed  Google Scholar 

  181. Venegas C, Kumar S, Franklin BS, Dierkes T, Brinkschulte R, Tejera D, Vieira-Saecker A, Schwartz S et al (2017) Microglia-derived ASC specks cross-seed amyloid-beta in Alzheimer’s disease. Nature 552:355–361

    Article  CAS  PubMed  Google Scholar 

  182. Ising C, Venegas C, Zhang SS, Scheiblich H, Schmidt SV, Vieira-Saecker A, Schwartz S, Albasset S et al (2019) NLRP3 inflammasome activation drives tau pathology. Nature 575:669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Zhou R, Yazdi AS, Menu P, Tschopp J (2011) A role for mitochondria in NLRP3 inflammasome activation. Nature 469:221–225

    Article  CAS  PubMed  Google Scholar 

  184. Yu J, Nagasu H, Murakami T, Hoang H, Broderick L, Hoffman HM, Horng T (2014) Inflammasome activation leads to Caspase-1-dependent mitochondrial damage and block of mitophagy. Proc Natl Acad Sci U S A 111:15514–15519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Heckmann BL, Teubner BJW, Tummers B, Boada-Romero E, Harris L, Yang M, Guy CS, Zakharenko SS et al (2019) LC3-associated endocytosis facilitates beta-amyloid clearance and mitigates neurodegeneration in murine Alzheimer’s disease. Cell 178:536–551 e514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Dionisio PEA, Oliveira SR, Amaral J, Rodrigues CMP (2019) Loss of microglial parkin inhibits necroptosis and contributes to neuroinflammation. Mol Neurobiol 56:2990–3004

    Article  CAS  PubMed  Google Scholar 

  187. Serrano-Pozo A, Frosch MP, Masliah E, Hyman BT (2011) Neuropathological alterations in Alzheimer disease. Cold Spring Harb Perspect Med 1:a006189

    Article  PubMed  PubMed Central  Google Scholar 

  188. Caselli RJ, Beach TG, Yaari R, Reiman EM (2006) Alzheimer’s disease a century later. J Clin Psychiatry 67:1784–1800

    Article  CAS  PubMed  Google Scholar 

  189. Cotman CW, Anderson AJ (1995) A potential role for apoptosis in neurodegeneration and Alzheimer’s disease. Mol Neurobiol 10:19–45

    Article  CAS  PubMed  Google Scholar 

  190. Eckert A, Marques CA, Keil U, Schussel K, Muller WE (2003) Increased apoptotic cell death in sporadic and genetic Alzheimer’s disease. Ann N Y Acad Sci 1010:604–609

    Article  CAS  PubMed  Google Scholar 

  191. Rohn TT, Head E, Nesse WH, Cotman CW, Cribbs DH (2001) Activation of caspase-8 in the Alzheimer’s disease brain. Neurobiol Dis 8:1006–1016

    Article  CAS  PubMed  Google Scholar 

  192. Yuan JY, Yankner BA (2000) Apoptosis in the nervous system. Nature 407:802–809

    Article  CAS  PubMed  Google Scholar 

  193. Su JH, Anderson AJ, Cummings BJ, Cotman CW (1994) Immunohistochemical evidence for apoptosis in Alzheimer’s disease. Neuroreport 5:2529–2533

    Article  CAS  PubMed  Google Scholar 

  194. Troncoso JC, Sukhov RR, Kawas CH, Koliatsos VE (1996) In situ labeling of dying cortical neurons in normal aging and in Alzheimer’s disease: correlations with senile plaques and disease progression. J Neuropathol Exp Neurol 55:1134–1142

    Article  CAS  PubMed  Google Scholar 

  195. Degterev A, Huang Z, Boyce M, Li Y, Jagtap P, Mizushima N, Cuny GD, Mitchison TJ et al (2005) Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol 1:112–119

    Article  CAS  PubMed  Google Scholar 

  196. Yuan J, Amin P, Ofengeim D (2019) Necroptosis and RIPK1-mediated neuroinflammation in CNS diseases. Nat Rev Neurosci 20:19–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Wallach D, Kang TB, Dillon CP, Green DR (2016) Programmed necrosis in inflammation: toward identification of the effector molecules. Science 352:aaf2154

    Article  PubMed  Google Scholar 

  198. Schenk B, Fulda S (2015) Reactive oxygen species regulate Smac mimetic/TNFalpha-induced necroptotic signaling and cell death. Oncogene 34:5796–5806

    Article  CAS  PubMed  Google Scholar 

  199. Zhang Y, Su SS, Zhao S, Yang Z, Zhong CQ, Chen X, Cai Q, Yang ZH et al (2017) RIP1 autophosphorylation is promoted by mitochondrial ROS and is essential for RIP3 recruitment into necrosome. Nat Commun 8:14329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Yamada T, Adachi Y, Fukaya M, Iijima M, Sesaki H (2016) Dynamin-related protein 1 deficiency leads to receptor-interacting protein kinase 3-mediated necroptotic neurodegeneration. Am J Pathol 186:2798–2802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Caccamo A, Branca C, Piras IS, Ferreira E, Huentelman MJ, Liang WS, Readhead B, Dudley JT et al (2017) Necroptosis activation in Alzheimer’s disease. Nat Neurosci 20:1236

    Article  CAS  PubMed  Google Scholar 

  202. Ofengeim D, Mazzitelli S, Ito Y, DeWitt JP, Mifflin L, Zou C, Das S, Adiconis X et al (2017) RIPK1 mediates a disease-associated microglial response in Alzheimer’s disease. Proc Natl Acad Sci U S A 114:E8788–E8797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Ito Y, Ofengeim D, Najafov A, Das S, Saberi S, Li Y, Hitomi J, Zhu H et al (2016) RIPK1 mediates axonal degeneration by promoting inflammation and necroptosis in ALS. Science 353:603–608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Re DB, Le Verche V, Yu C, Amoroso MW, Politi KA, Phani S, Ikiz B, Hoffmann L et al (2014) Necroptosis drives motor neuron death in models of both sporadic and familial ALS. Neuron 81:1001–1008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Iannielli A, Bido S, Folladori L, Segnali A, Cancellieri C, Maresca A, Massimino L, Rubio A et al (2018) Pharmacological inhibition of necroptosis protects from dopaminergic neuronal cell death in Parkinson’s disease models. Cell Rep 22:2066–2079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Ofengeim D, Ito Y, Najafov A, Zhang Y, Shan B, DeWitt JP, Ye J, Zhang X et al (2015) Activation of necroptosis in multiple sclerosis. Cell Rep 10:1836–1849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Yang SH, Lee DK, Shin J, Lee S, Baek S, Kim J, Jung H, Hah JM et al (2017) Nec-1 alleviates cognitive impairment with reduction of Abeta and tau abnormalities in APP/PS1 mice. EMBO Mol Med 9:61–77

    Article  CAS  PubMed  Google Scholar 

  208. Matsuzawa-Ishimoto Y, Shono Y, Gomez LE, Hubbard-Lucey VM, Cammer M, Neil J, Dewan MZ, Lieberman SR et al (2017) Autophagy protein ATG16L1 prevents necroptosis in the intestinal epithelium. J Exp Med 214:3687–3705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Mizumura K, Cloonan SM, Nakahira K, Bhashyam AR, Cervo M, Kitada T, Glass K, Owen CA et al (2014) Mitophagy-dependent necroptosis contributes to the pathogenesis of COPD. J Clin Invest 124:3987–4003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Goodall ML, Fitzwalter BE, Zahedi S, Wu M, Rodriguez D, Mulcahy-Levy JM, Green DR, Morgan M et al (2016) The autophagy machinery controls cell death switching between apoptosis and necroptosis. Dev Cell 37:337–349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 81673209).

Author information

Authors and Affiliations

Authors

Contributions

Mingxue Song is the first author of this work, Xiulan Zhao is the co-author, and Fuyong Song is the corresponding author. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Fuyong Song.

Ethics declarations

Conflict of Interest

The authors declare they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, M., Zhao, X. & Song, F. Aging-Dependent Mitophagy Dysfunction in Alzheimer’s Disease. Mol Neurobiol 58, 2362–2378 (2021). https://doi.org/10.1007/s12035-020-02248-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-020-02248-y

Keywords

Navigation