Skip to main content

Advertisement

Log in

Cholinergic Differentiation of Human Neuroblastoma SH-SY5Y Cell Line and Its Potential Use as an In vitro Model for Alzheimer’s Disease Studies

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Cholinergic transmission is critical to high-order brain functions such as memory, learning, and attention. Alzheimer’s disease (AD) is characterized by cognitive decline associated with a specific degeneration of cholinergic neurons. No effective treatment to prevent or reverse the symptoms is known. Part of this might be due to the lack of in vitro models that effectively mimic the relevant features of AD. Here, we describe the characterization of an AD in vitro model using the SH-SY5Y cell line. Exponentially growing cells were maintained in DMEM/F12 medium and differentiation was triggered by the combination of retinoic acid (RA) and BDNF. Both acetylcholinesterase (AChE) and choline acetyltransferase (ChAT) enzymatic activities and immunocontent were determined. For mimicking tau and amyloid-β pathology, RA + BDNF-differentiated cells were challenged with okadaic acid (OA) or soluble oligomers of amyloid-β (AβOs) and neurotoxicity was evaluated. RA + BDNF-induced differentiation resulted in remarkable neuronal morphology alterations characterized by increased neurite density. Enhanced expression and enzymatic activities of cholinergic markers were observed compared to RA-differentiation only. Combination of sublethal doses of AβOs and OA resulted in decreased neurite densities, an in vitro marker of synaptopathy. Challenging RA + BDNF-differentiated SH-SY5Y cells with the combination of sublethal doses of OA and AβO, without causing considerable decrease of cell viability, provides an in vitro model which mimics the early-stage pathophysiology of cholinergic neurons affected by AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AD:

Alzheimer’s disease

DMEM:

Dulbecco’s Modified Eagle Medium

FBS:

Fetal bovine serum

RA:

Retinoic acid

BDNF:

Brain-derived neurotrophic factor

AChE:

Acetylcholinesterase

ChAT:

Choline acetyltransferase

AβOs:

Amyloid-β oligomers

AO:

Okadaic acid

MTT:

3-(4,5-Dimethylthiazol-2il)-2,5-diphenyltetrazolium bromide

DAT:

Dopamine transporter

Aβ:

Amyloid-β

BFC:

Basal forebrain complex

APP:

Amyloid precursor protein

ACh:

Acetylcholine

CDK5:

Cyclin-dependent kinase

References

  1. Moller HJ, Graeber MB (1998) The case described by Alois Alzheimer in 1911. Historical and conceptual perspectives based on the clinical record and neurohistological sections. Eur Arch Psychiatry Clin Neurosci 248:111–122

    CAS  PubMed  Google Scholar 

  2. Forman MS, Trojanowski JQ, Lee VM (2004) Neurodegenerative diseases: a decade of discoveries paves the way for therapeutic breakthroughs. Nat Med 10:1055–1063

    CAS  PubMed  Google Scholar 

  3. Oda Y, Nakanishi I (2000) The distribution of cholinergic neurons in the human central nervous system. Histol Histopathol 15:825–834

    CAS  PubMed  Google Scholar 

  4. Nyakas C, Granic I, Halmy LG, Banerjee P, Luiten PGM (2011) The basal forebrain cholinergic system in aging and dementia. Rescuing cholinergic neurons from neurotoxic amyloid-β42 with memantine. Behav Brain Res 221:594–603

    CAS  PubMed  Google Scholar 

  5. Reitz C, Mayeux R (2014) Alzheimer disease: epidemiology, diagnostic criteria, risk factors and biomarkers. Biochem Pharmacol 88:640–651

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Adalbert R, Gilley J, Coleman MP (2007) Aβ, tau and ApoE4 in Alzheimer’s disease: the axonal connection. Trends Mol Med 13:135–142

    CAS  PubMed  Google Scholar 

  7. Pagani L, Eckert A (2011) Amyloid-β interaction with mitochondria. Int J Alzheimers Dis 2011:925050

    PubMed  PubMed Central  Google Scholar 

  8. Deshpande A, Mina E, Glabe C, Busciglio J (2006) Different conformations of amyloid beta induce neurotoxicity by distinct mechanisms in human cortical neurons. J Neurosci 26:6011–6018

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Gouras GK, Tampellini D, Takahashi RH, Capetillo-Zarate E (2010) Intraneuronal amyloid-β accumulation and synapse pathology in Alzheimer’s disease. Acta Neuropathol 119:523–541

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang H-W, Pasternak JF, Kuo H, Ristic H, Lambert MP, Chromy B et al (2002) Soluble oligomers of beta amyloid (1-42) inhibit long-term potentiation but not long-term depression in rat dentate gyrus. Brain Res 924:133–140

    CAS  PubMed  Google Scholar 

  11. Agholme L, Lindström T, Kågedal K, Marcusson J, Hallbeck M, Kgedal K et al (2010) An in vitro model for neuroscience: differentiation of SH-SY5Y cells into cells with morphological and biochemical characteristics of mature neurons. J Alzheimers Dis 20:1069–1082

    CAS  PubMed  Google Scholar 

  12. Carolindah MN, Rosli R, Adam A, Nordin N (2013) An overview of in vitro research models for Alzheimer’s disease. Regen Res 2:8–13

    Google Scholar 

  13. Gu H, Li L, Cui C, Zhao Z, Song G (2017) Overexpression of let-7a increases neurotoxicity in a PC12 cell model of Alzheimer’s disease via regulating autophagy. Exp Ther Med 14:3688–3698

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Kovalevich J, Langford D (2013) Considerations for the use of SH-SY5Y neuroblastoma cells in neurobiology. Methods Mol Biol 1078:9–21

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Choi SH, Kim YH, Hebisch M, Sliwinski C, Lee S, D’Avanzo C et al (2014) A three-dimensional human neural cell culture model of Alzheimer’s disease. Nature.

  16. Biedler JL, Roffler-tarlov S, Schachner M, Freedman LS (1978) Multiple neurotransmitter synthesis by human neuroblastoma cell lines and clones. Cancer Res:3751–3757

  17. Påhlman S, Ruusala a I, Abrahamsson L, Mattsson ME, Esscher T (1984) Retinoic acid-induced differentiation of cultured human neuroblastoma cells: a comparison with phorbolester-induced differentiation. Cell Differ 14:135–144

    PubMed  Google Scholar 

  18. Påhlman S, Hoehner JC, Nånberg E, Hedborg F, Fagerström S, Gestblom C et al (1995) Differentiation and survival influences of growth factors in human neuroblastoma. Eur J Cancer 31A:453–458

    PubMed  Google Scholar 

  19. Arcangeli A, Rosati B, Crociani O, Cherubini A, Fontana L, Passani B et al (1999) Modulation of HERG current and herg gene expression during retinoic acid treatment of human neuroblastoma cells: potentiating effects of BDNF. J Neurobiol 40:214–225

    CAS  PubMed  Google Scholar 

  20. Encinas M, Iglesias M, Liu Y, Wang H, Muhaisen A, Cen V et al (2000) Sequential treatment of SH-SY5Y cells with retinoic acid and brain-derived neurotrophic factor gives rise to fully differentiated , neurotrophic factor-dependent. J Neurochem 75:991–1003

    CAS  PubMed  Google Scholar 

  21. Lopes FM, Schröder R, da Frota MLC, Zanotto-Filho A, Müller CB, Pires AS et al (2010) Comparison between proliferative and neuron-like SH-SY5Y cells as an in vitro model for Parkinson disease studies. Brain Res 1337:85–94

    CAS  PubMed  Google Scholar 

  22. Constantinescu R, Constantinescu AT, Reichmann H, Janetzky B (2007) Neuronal differentiation and long-term culture of the human neuroblastoma line SH-SY5Y. J Neural Transm:17–28

  23. Lopes FM, Londero GF, de Medeiros LM, da Motta LL, Behr GA, de Oliveira VA et al (2012) Evaluation of the neurotoxic/neuroprotective role of organoselenides using differentiated human neuroblastoma SH-SY5Y cell line challenged with 6-hydroxydopamine. Neurotox Res 22:138–149

    CAS  PubMed  Google Scholar 

  24. Kaplan DR, Matsumoto K, Lucarelli E, Thiele CJ (1993) Induction of TrkB by retinoic acid mediates biologic responsiveness to BDNF and differentiation of human neuroblastoma cells. Neuron Neuron, Cell Press 11:321–331

    CAS  PubMed  Google Scholar 

  25. Edsjö A, Lavenius E, Nilsson H, Hoehner JC, Simonsson P, Culp LA et al (2003) Expression of trkB in human neuroblastoma in relation to MYCN expression and retinoic acid treatment. Lab Investig 83:813–823

    PubMed  Google Scholar 

  26. Ward NL, Hagg T (2000) BDNF is needed for postnatal maturation of basal forebrain and neostriatum cholinergic neurons in vivo. Exp Neurol 162:297–310

    CAS  PubMed  Google Scholar 

  27. Schliebs R, Arendt T (2011) The cholinergic system in aging and neuronal degeneration. Behav Brain Res 221:555–563

    CAS  PubMed  Google Scholar 

  28. Paul S, Jeon WK, Bizon JL, Han J-S (2015) Interaction of basal forebrain cholinergic neurons with the glucocorticoid system in stress regulation and cognitive impairment. Front Aging Neurosci 7:1–11

    Google Scholar 

  29. Ozen Irmak S, de Lecea L (2014) Basal forebrain cholinergic modulation of sleep transitions. Sleep 37:1941–1951

    PubMed Central  Google Scholar 

  30. Haam J, Yakel JL (2017) Cholinergic modulation of the hippocampal region and memory function. J Neurochem 142:111–121

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Grothe MJ, Schuster C, Bauer F, Heinsen H, Prudlo J, Teipel SJ (2014) Atrophy of the cholinergic basal forebrain in dementia with Lewy bodies and Alzheimer’s disease dementia. J Neurol:71–73

  32. Nilbratt M, Porras O, Marutle A, Hovatta O, Nordberg A (2010) Neurotrophic factors promote cholinergic differentiation in human embryonic stem cell-derived neurons. J Cell Mol Med 14:1476–1484

    CAS  PubMed  Google Scholar 

  33. Sharow KA, Temkin B, Asson-Batres MA (2012) Retinoic acid stability in stem cell cultures. Int J Dev Biol 56:273–278

    CAS  PubMed  Google Scholar 

  34. Gautier L, Cope L, Bolstad BM, Irizarry RA (2004) affy—analysis of Affymetrix GeneChip data at the probe level. Bioinformatics 20:307–315

    CAS  PubMed  Google Scholar 

  35. Leek JT, Johnson WE, Parker HS, Jaffe AE, Storey JD (2012) The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics 28:882–883

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide. PNAS 102:15545–15550

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Ellman GL, Courtney KD, Andres V, Featherstone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95

    CAS  PubMed  Google Scholar 

  38. Chao L, Wolfgram F (1972) Spectrophotometric for choline acetyltransferase. Anal Biochem 46:114–118

    CAS  PubMed  Google Scholar 

  39. Klein WL (2002) Aβ toxicity in Alzheimer’s disease: globular oligomers (ADDLs) as new vaccine and drug targets. Neurochem Int 41:345–352

    CAS  PubMed  Google Scholar 

  40. Stine WB, Dahlgren KN, G a K, LaDu MJ (2003) In vitro characterization of conditions for amyloid-beta peptide oligomerization and fibrillogenesis. J Biol Chem 278:11612–11622

    CAS  PubMed  Google Scholar 

  41. Oda Y (1999) Choline acetyltransferase: the structure, distribution and pathologic changes in the central nervous system. Pathol Int 49:921–937

    CAS  PubMed  Google Scholar 

  42. Kamat PK, Tota S, Saxena G, Shukla R, Nath C (2010) Okadaic acid (ICV) induced memory impairment in rats: a suitable experimental model to test anti-dementia activity. Brain Res 1309:66–74

    CAS  PubMed  Google Scholar 

  43. Jack CR, Holtzman DM (2013) Biomarker modeling of Alzheimer’s disease. Neuron 80:1347–1358

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Schliebs R, Arendt T (2006) The significance of the cholinergic system in the brain during aging and in Alzheimer’s disease. J Neural Transm 113:1625–1644

    CAS  PubMed  Google Scholar 

  45. Douchamps V, Mathis C (2017) A second wind for the cholinergic system in Alzheimer’s therapy. Behav Pharmacol 28:112–123

    CAS  PubMed  Google Scholar 

  46. Butcher LL, Oh JD, Woolf NJ (1993) Cholinergic neurons identified by in sity hybridization histochemistry. In: Cholinergic Function and Dysfunction, AC Cuello, Ed., pp.1–8, Elsevier, Amsterdam, 1993

  47. Mok KY, Jones EL, Hanney M, Harold D, Sims R, Williams J et al (2014) Polymorphisms in BACE2 may affect the age of onset Alzheimer’s dementia in down syndrome. Neurobiol Aging 35:1513.e1–1513.e5

    CAS  Google Scholar 

  48. Ma Z, Jiang W, Zhang EE (2016) Orexin signaling regulates both the hippocampal clock and the circadian oscillation of Alzheimer’s disease-risk genes. Sci Rep 6:36035

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Kelleher RJ, Shen J (2017) Presenilin-1 mutations and Alzheimer’s disease. Proc Natl Acad Sci 114:629–631

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Endres K, Deller T (2017) Regulation of alpha-secretase ADAM10 in vitro and in vivo: genetic, epigenetic, and protein-based mechanisms. Front Mol Neurosci 10:1–18

    Google Scholar 

  51. Liu SL, Wang C, Jiang T, Tan L, Xing A, Yu JT (2016) The role of Cdk5 in Alzheimer’s disease. Mol Neurobiol 53:4328–4342

    CAS  PubMed  Google Scholar 

  52. van Pelt J, van Ooyen A, Uylings HBM (2014) Axonal and dendritic density field estimation from incomplete single-slice neuronal reconstructions. Front Neuroanat 8:1–16

    Google Scholar 

  53. Su JH, Cummings BJ, Cotman CW (1994) Early phosphorylation of tau in Alzheimer’s disease occurs at Ser-202 and is preferentially located within neurites. Neuroreport 5:2358–2362

    CAS  PubMed  Google Scholar 

  54. Olivero G, Grilli M, Chen J, Preda S, Mura E, Govoni S et al (2014) Effects of soluble β-amyloid on the release of neurotransmitters from rat brain synaptosomes. Front Aging Neurosci 6:166

    PubMed  PubMed Central  Google Scholar 

  55. Franze K, Gerdelmann J, Weick M, Betz T, Pawlizak S, Lakadamyali M et al (2009) Neurite branch retraction is caused by a threshold-dependent mechanical impact. Biophys J 97:1883–1890

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Klein WL (2013) Synaptotoxic amyloid-beta oligomers: a molecular basis for the cause, diagnosis, and treatment of Alzheimer’s disease? J Alzheimers Dis 33(Suppl 1):S49–S65

    PubMed  Google Scholar 

  57. Lasagna-Reeves CA, Castillo-Carranza DL, Sengupta U, Sarmiento J, Troncoso J, Jackson GR et al (2012) Identification of oligomers at early stages of tau aggregation in Alzheimer’s disease. FASEB J 26:1946–1959

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Amaro M, Kubiak-Ossowska K, Birch DJS, Rolinski OJ (2013) Initial stages of beta-amyloid Aβ 1−40 and Aβ 1−42 oligomerization observed using fluorescence decay and molecular dynamics analyses of tyrosine. Methods Appl Fluoresc 1:15006

    Google Scholar 

Download references

Funding

This study was supported by the Brazilian funds MCTI/CNPq INCT-TM/CAPES/FAPESP (465458/2014-9), CNPq/MS/SCTIE/DECIT - Pesquisas Sobre Doenças Neurodegenerativas (466989/2014-8), and PRONEX/FAPERGS (16/2551-0000499-4). FK received a fellowship from MCT/CNPq [306439/2014-0]. ERZ receives financial support from CAPES [88881.141186/2017-01].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fábio Klamt.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Medeiros, L.M., De Bastiani, M.A., Rico, E.P. et al. Cholinergic Differentiation of Human Neuroblastoma SH-SY5Y Cell Line and Its Potential Use as an In vitro Model for Alzheimer’s Disease Studies. Mol Neurobiol 56, 7355–7367 (2019). https://doi.org/10.1007/s12035-019-1605-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-019-1605-3

Keywords

Navigation