Skip to main content

Advertisement

Log in

Rapamycin Removes Damaged Mitochondria and Protects Human Trabecular Meshwork (TM-1) Cells from Chronic Oxidative Stress

Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Glaucoma is a chronic optic neuropathy that could lead to permanent vision loss. Primary open-angle glaucoma (POAG) is the most common type of glaucoma, with elevated intraocular pressure (IOP) as a major risk factor. IOP is mainly regulated by trabecular meshwork (TM), an important component of the conventional aqueous humor (AH) outflow pathway. TM cells are constantly subjected to oxidative stress. Long-term exposure to oxidative stress has been shown to cause elevation of AH outflow resistance, leading to higher IOP. In this study, we induced chronic oxidative stress in human trabecular meshwork (TM-1) cells with 1 μM rotenone and investigated the levels of reactive oxygen species (ROS), autophagy, and mitochondrial functions. Protective effects of rapamycin, an inducer of autophagy, were also investigated. Our data indicated that rotenone significantly increased oxidative stress, but not autophagy, in TM-1 cells. Rapamycin at 10 nM effectively suppressed the rotenone-induced cell apoptosis, as well as the ROS elevation. The protective effects of rapamycin could be associated to the induction of autophagy and removal of damaged mitochondria in TM-1 cells. Our results suggest autophagy has important roles in protecting TM-1 cells from oxidative stress, which could be further developed into a novel treatment to POAG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Jonas JB, Aung T, Bourne RR, Bron AM, Ritch R, Panda-Jonas S (2017) Glaucoma. Lancet 390(10108):2183–2193. https://doi.org/10.1016/S0140-6736(17)31469-1

    Article  PubMed  Google Scholar 

  2. Bourne RR, Taylor HR, Flaxman SR, Keeffe J, Leasher J, Naidoo K, Pesudovs K, White RA et al (2016) Number of people blind or visually impaired by glaucoma worldwide and in world regions 1990–2010: a meta-analysis. PLoS One 11(10):e0162229. https://doi.org/10.1371/journal.pone.0162229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Leske MC, Heijl A, Hussein M, Bengtsson B, Hyman L, Komaroff E, Early Manifest Glaucoma Trial G (2003) Factors for glaucoma progression and the effect of treatment: the early manifest glaucoma trial. Arch Ophthalmol 121(1):48–56

    Article  PubMed  Google Scholar 

  4. Llobet A, Gasull X, Gual A (2003) Understanding trabecular meshwork physiology: a key to the control of intraocular pressure? News Physiol Sci 18:205–209

    PubMed  Google Scholar 

  5. Liton PB (2016) The autophagic lysosomal system in outflow pathway physiology and pathophysiology. Exp Eye Res 144:29–37. https://doi.org/10.1016/j.exer.2015.07.013

    Article  CAS  PubMed  Google Scholar 

  6. Schieber M, Chandel NS (2014) ROS function in redox signaling and oxidative stress. Curr Biol 24(10):R453–R462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhang H, Kong X, Kang J, Su J, Li Y, Zhong J, Sun L (2009) Oxidative stress induces parallel autophagy and mitochondria dysfunction in human glioma U251 cells. Toxicol Sci 110(2):376–388

    Article  CAS  PubMed  Google Scholar 

  8. Porter K, Hirt J, Stamer WD, Liton PB (2015) Autophagic dysregulation in glaucomatous trabecular meshwork cells. Biochim Biophys Acta 1852(3):379–385. https://doi.org/10.1016/j.bbadis.2014.11.021

    Article  CAS  PubMed  Google Scholar 

  9. Su W, Li Z, Jia Y, Zhuo Y (2014) Rapamycin is neuroprotective in a rat chronic hypertensive glaucoma model. PLoS One 9(6):e99719. https://doi.org/10.1371/journal.pone.0099719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Del Olmo Aguado S, Núñez Älvarez C, Osborne N (2014) Rapamycin down-regulates REDD1 to blunt cell death: a potential way to maintain retinal ganglion cell function as in glaucoma. Acta Ophthalmol 92(s253):0–0

    Article  Google Scholar 

  11. Kim J, Park DY, Bae H, Park DY, Kim D, Lee CK, Song S, Chung TY et al (2017) Impaired angiopoietin/Tie2 signaling compromises Schlemm’s canal integrity and induces glaucoma. J Clin Invest 127(10):3877–3896. https://doi.org/10.1172/JCI94668

    Article  PubMed  PubMed Central  Google Scholar 

  12. Maurya N, Agarwal NR, Ghosh I (2016) Low-dose rotenone exposure induces early senescence leading to late apoptotic signaling cascade in human trabecular meshwork (HTM) cell line: an in vitro glaucoma model. Cell Biol Int 40(1):107–120. https://doi.org/10.1002/cbin.10561

    Article  CAS  PubMed  Google Scholar 

  13. Polansky JR, Weinreb RN, Baxter JD, Alvarado J (1979) Human trabecular cells. I. Establishment in tissue culture and growth characteristics. Invest Ophthalmol Vis Sci 18(10):1043–1049

    CAS  PubMed  Google Scholar 

  14. Filla MS, Liu X, Nguyen TD, Polansky JR, Brandt CR, Kaufman PL, Peters DM (2002) In vitro localization of TIGR/MYOC in trabecular meshwork extracellular matrix and binding to fibronectin. Invest Ophthalmol Vis Sci 43(1):151–161

    PubMed  Google Scholar 

  15. Keller KE, Bhattacharya SK, Borrás T, Brunner TM, Chansangpetch S, Clark AF, Dismuke WM, Du Y et al (2018) Consensus recommendations for trabecular meshwork cell isolation, characterization and culture. Exp Eye Res 171:164–173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Aparicio IM, Espino J, Bejarano I, Gallardo-Soler A, Campo ML, Salido GM, Pariente JA, Pena FJ et al (2016) Autophagy-related proteins are functionally active in human spermatozoa and may be involved in the regulation of cell survival and motility. Sci Rep 6:33647. https://doi.org/10.1038/srep33647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kannan K, Jain SK (2000) Oxidative stress and apoptosis. Pathophysiology: the official journal of the International Society for Pathophysiology 7(3):153–163

    Article  CAS  Google Scholar 

  18. Lee J, Giordano S, Zhang J (2012) Autophagy, mitochondria and oxidative stress: cross-talk and redox signalling. Biochem J 441(2):523–540. https://doi.org/10.1042/BJ20111451

    Article  CAS  PubMed  Google Scholar 

  19. Davies KJ (1995) Oxidative stress: the paradox of aerobic life. In: Biochemical Society Symposia. Portland Press Limited, pp 1–31

  20. Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39(1):44–84. https://doi.org/10.1016/j.biocel.2006.07.001

    Article  CAS  PubMed  Google Scholar 

  21. Veal EA, Day AM, Morgan BA (2007) Hydrogen peroxide sensing and signaling. Mol Cell 26(1):1–14. https://doi.org/10.1016/j.molcel.2007.03.016

    Article  CAS  PubMed  Google Scholar 

  22. Testa CM, Sherer TB, Greenamyre JT (2005) Rotenone induces oxidative stress and dopaminergic neuron damage in organotypic substantia nigra cultures. Brain Res Mol Brain Res 134(1):109–118. https://doi.org/10.1016/j.molbrainres.2004.11.007

    Article  CAS  PubMed  Google Scholar 

  23. Takeuchi H, Yanagida T, Inden M, Takata K, Kitamura Y, Yamakawa K, Sawada H, Izumi Y et al (2009) Nicotinic receptor stimulation protects nigral dopaminergic neurons in rotenone-induced Parkinson’s disease models. J Neurosci Res 87(2):576–585

    Article  CAS  PubMed  Google Scholar 

  24. Feng Y, Liang Z-H, Wang T, Qiao X, Liu H-J, Sun S-G (2006) Alpha-Synuclein redistributed and aggregated in rotenone-induced Parkinson’s disease rats. Neurosci Bull 22(5):288–293

    CAS  PubMed  Google Scholar 

  25. He Y, Leung KW, Zhang YH, Duan S, Zhong XF, Jiang RZ, Peng Z, Tombran-Tink J et al (2008) Mitochondrial complex I defect induces ROS release and degeneration in trabecular meshwork cells of POAG patients: protection by antioxidants. Invest Ophthalmol Vis Sci 49(4):1447–1458. https://doi.org/10.1167/iovs.07-1361

    Article  PubMed  Google Scholar 

  26. Yu M, Sun J, Peng W, Chen Z, Lin X, Liu X, Li M, Wu K (2010) Protein expression in human trabecular meshwork: downregulation of RhoGDI by dexamethasone in vitro. Mol Vis 16:213–223

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Chen M, Liu B, Gao Q, Zhuo Y, Ge J (2011) Mitochondria-targeted peptide MTP-131 alleviates mitochondrial dysfunction and oxidative damage in human trabecular meshwork cells. Invest Ophthalmol Vis Sci 52(10):7027–7037. https://doi.org/10.1167/iovs.11-7524

    Article  CAS  PubMed  Google Scholar 

  28. Yang X, Liu B, Bai Y, Chen M, Li Y, Chen M, Wei Y, Ge J et al (2011) Elevated pressure downregulates ZO-1 expression and disrupts cytoskeleton and focal adhesion in human trabecular meshwork cells. Mol Vis 17:2978–2985

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Qiu X, Wu K, Lin X, Liu Q, Ye Y, Yu M (2015) Dexamethasone increases Cdc42 expression in human TM-1 cells. Curr Eye Res 40(3):290–299. https://doi.org/10.3109/02713683.2014.922191

    Article  CAS  PubMed  Google Scholar 

  30. Sies H (1997) Oxidative stress: oxidants and antioxidants. Exp Physiol 82(2):291–295

    Article  CAS  PubMed  Google Scholar 

  31. Shin YJ, Cho DY, Chung TY, Han SB, Hyon JY, Wee WR (2011) Rapamycin reduces reactive oxygen species in cultured human corneal endothelial cells. Curr Eye Res 36(12):1116–1122. https://doi.org/10.3109/02713683.2011.614372

    Article  CAS  PubMed  Google Scholar 

  32. Singh AK, Singh S, Garg G, Rizvi SI (2016) Rapamycin alleviates oxidative stress-induced damage in rat erythrocytes. Biochem Cell Biol = Biochimie et biologie cellulaire 94(5):471–479. https://doi.org/10.1139/bcb-2016-0048

    Article  CAS  PubMed  Google Scholar 

  33. Vezina C, Kudelski A, Sehgal S (1975) Rapamycin (AY-22, 989), a new antifungal antibiotic. J Antibiot 28(10):721–726

    Article  CAS  Google Scholar 

  34. Brown EJ, Albers MW, Shin TB, Ichikawa K, Keith CT, Lane WS, Schreiber SL (1994) A mammalian protein targeted by G1-arresting rapamycin-receptor complex. Nature 369(6483):756–758. https://doi.org/10.1038/369756a0

    Article  CAS  PubMed  Google Scholar 

  35. Mizushima N (2010) The role of the Atg1/ULK1 complex in autophagy regulation. Curr Opin Cell Biol 22(2):132–139

    Article  CAS  PubMed  Google Scholar 

  36. Hosokawa N, Hara T, Kaizuka T, Kishi C, Takamura A, Miura Y, Iemura S-i, Natsume T et al (2009) Nutrient-dependent mTORC1 association with the ULK1–Atg13–FIP200 complex required for autophagy. Mol Biol Cell 20(7):1981–1991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kim J, Kundu M, Viollet B, Guan K-L (2011) AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol 13(2):132–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Rezaie T, Child A, Hitchings R, Brice G, Miller L, Coca-Prados M, Héon E, Krupin T et al (2002) Adult-onset primary open-angle glaucoma caused by mutations in optineurin. Science 295(5557):1077–1079

    Article  CAS  PubMed  Google Scholar 

  39. Wild P, Farhan H, McEwan DG, Wagner S, Rogov VV, Brady NR, Richter B, Korac J et al (2011) Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth. Science 333(6039):228–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Youle RJ, Narendra DP (2011) Mechanisms of mitophagy. Nat Rev Mol Cell Biol 12(1):9–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (to S.D.Z., 81100661), the Natural Science Foundation of Liaoning Province (to S.D.Z., 2015020560), and the Endowment Fund for Lim Por-Yen Eye Genetics Research Centre, Hong Kong.

Author information

Authors and Affiliations

Authors

Contributions

S.D.Z., J.N.H., C.P.P. and W.K.C. designed research; J.N.H. and W.K.C. performed research; All authors analyzed data; J.N.H., S.D.Z., C.P.P. and W.K.C. wrote the manuscript; and C.P.P. and W.K.C. supervised the project.

Corresponding author

Correspondence to Wai Kit Chu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, J.N., Zhang, S.D., Qu, Y. et al. Rapamycin Removes Damaged Mitochondria and Protects Human Trabecular Meshwork (TM-1) Cells from Chronic Oxidative Stress. Mol Neurobiol 56, 6586–6593 (2019). https://doi.org/10.1007/s12035-019-1559-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-019-1559-5

Keywords

Navigation