Skip to main content

Advertisement

Log in

Identification of Sphingosine 1-Phosphate Receptor Subtype 1 (S1P1) as a Pathogenic Factor in Transient Focal Cerebral Ischemia

Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Medically relevant roles of receptor-mediated sphingosine 1-phosphate (S1P) signaling have become a successful or promising target for multiple sclerosis or cerebral ischemia. Animal-based proof-of-concept validation for the latter is particularly through the neuroprotective efficacy of FTY720, a non-selective S1P receptor modulator, presumably via activation of S1P1. In spite of a clear link between S1P signaling and cerebral ischemia, it remains unknown whether the role of S1P1 is pathogenic or neuroprotective. Here, we investigated the involvement of S1P1 along with its role in cerebral ischemia using a transient middle cerebral artery occlusion (“tMCAO”) model. Brain damage following tMCAO, as assessed by brain infarction, neurological deficit score, and neural cell death, was reduced by oral administration of AUY954, a selective S1P1 modulator as a functional antagonist, in a therapeutic paradigm, indicating that S1P1 is a pathogenic mediator rather than a neuroprotective mediator. This pathogenic role of S1P1 in cerebral ischemia was reaffirmed because tMCAO-induced brain damage was reduced by genetic knockdown with an intracerebroventricular microinjection of S1P1 shRNA lentivirus into the brain. Genetic knockdown of S1P1 or AUY954 exposure reduced microglial activation, as assessed by reduction in the number of activated microglia and reversed morphology from amoeboid to ramified, and microglial proliferation in ischemic brain. Its role in microglial activation was recapitulated in lipopolysaccharide-stimulated primary mouse microglia, in which the mRNA expression level of TNF-α and IL-1β, well-known markers for microglial activation, was reduced in microglia transfected with S1P1 siRNA. These data suggest that the pathogenic role of S1P1 is associated with microglial activation in ischemic brain. Additionally, the pathogenic role of S1P1 in cerebral ischemia appears to be associated with the blood-brain barrier disruption and brain-derived neurotrophic factor (BDNF) downregulation. Overall, findings from the current study clearly identify S1P1 signaling as a pathogenic factor in transient focal cerebral ischemia, further implicating S1P1 antagonists including functional antagonists as plausible therapeutic agents for human stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Choi JW, Chun J (2013) Lysophospholipids and their receptors in the central nervous system. Biochim Biophys Acta 1831(1):20–32. doi:10.1016/j.bbalip.2012.07.015

    Article  CAS  PubMed  Google Scholar 

  2. Kihara Y, Maceyka M, Spiegel S, Chun J (2014) Lysophospholipid receptor nomenclature review: IUPHAR review 8. Br J Pharmacol 171(15):3575–3594. doi:10.1111/bph.12678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cohen JA, Chun J (2011) Mechanisms of fingolimod's efficacy and adverse effects in multiple sclerosis. Ann Neurol 69(5):759–777. doi:10.1002/ana.22426

    Article  CAS  PubMed  Google Scholar 

  4. Fu Y, Hao J, Zhang N, Ren L, Sun N, Li YJ, Yan Y, Huang D et al (2014) Fingolimod for the treatment of intracerebral hemorrhage: a 2-arm proof-of-concept study. JAMA Neurol 71(9):1092–1101. doi:10.1001/jamaneurol.2014.1065

    Article  PubMed  Google Scholar 

  5. Czech B, Pfeilschifter W, Mazaheri-Omrani N, Strobel MA, Kahles T, Neumann-Haefelin T, Rami A, Huwiler A et al (2009) The immunomodulatory sphingosine 1-phosphate analog FTY720 reduces lesion size and improves neurological outcome in a mouse model of cerebral ischemia. Biochem Biophys Res Commun 389(2):251–256. doi:10.1016/j.bbrc.2009.08.142

    Article  CAS  PubMed  Google Scholar 

  6. Hasegawa Y, Suzuki H, Sozen T, Rolland W, Zhang JH (2010) Activation of sphingosine 1-phosphate receptor-1 by FTY720 is neuroprotective after ischemic stroke in rats. Stroke 41(2):368–374. doi:10.1161/STROKEAHA.109.568899

    Article  CAS  PubMed  Google Scholar 

  7. Kraft P, Gob E, Schuhmann MK, Gobel K, Deppermann C, Thielmann I, Herrmann AM, Lorenz K et al (2013) FTY720 ameliorates acute ischemic stroke in mice by reducing thrombo-inflammation but not by direct neuroprotection. Stroke 44(11):3202–3210. doi:10.1161/STROKEAHA.113.002880

    Article  CAS  PubMed  Google Scholar 

  8. Moon E, Han JE, Jeon S, Ryu JH, Choi JW, Chun J (2015) Exogenous S1P exposure potentiates ischemic stroke damage that is reduced possibly by inhibiting S1P receptor signaling. Mediat Inflamm 2015:492659. doi:10.1155/2015/492659

    Article  Google Scholar 

  9. Nazari M, Keshavarz S, Rafati A, Namavar MR, Haghani M (2016) Fingolimod (FTY720) improves hippocampal synaptic plasticity and memory deficit in rats following focal cerebral ischemia. Brain Res Bull 124:95–102. doi:10.1016/j.brainresbull.2016.04.004

    Article  CAS  PubMed  Google Scholar 

  10. Shichita T, Sugiyama Y, Ooboshi H, Sugimori H, Nakagawa R, Takada I, Iwaki T, Okada Y et al (2009) Pivotal role of cerebral interleukin-17-producing gammadeltaT cells in the delayed phase of ischemic brain injury. Nat Med 15(8):946–950. doi:10.1038/nm.1999

    Article  CAS  PubMed  Google Scholar 

  11. Wei Y, Yemisci M, Kim HH, Yung LM, Shin HK, Hwang SK, Guo S, Qin T et al (2011) Fingolimod provides long-term protection in rodent models of cerebral ischemia. Ann Neurol 69(1):119–129. doi:10.1002/ana.22186

    Article  CAS  PubMed  Google Scholar 

  12. Awad AS (2006) Selective sphingosine 1-phosphate 1 receptor activation reduces ischemia-reperfusion injury in mouse kidney. Am J Physiol Renal Physiol 290(6):F1516–F1524. doi:10.1152/ajprenal.00311.2005

    Article  CAS  PubMed  Google Scholar 

  13. Ham A, Kim M, Kim JY, Brown KM, Fruttiger M, D'Agati VD, Thomas Lee H (2013) Selective deletion of the endothelial sphingosine-1-phosphate 1 receptor exacerbates kidney ischemia–reperfusion injury. Kidney Int 85(4):807–823. doi:10.1038/ki.2013.345

    Article  PubMed  PubMed Central  Google Scholar 

  14. Lien YH, Yong KC, Cho C, Igarashi S, Lai LW (2006) S1P1-selective agonist, SEW2871, ameliorates ischemic acute renal failure. Kidney Int 69(9):1601–1608. doi:10.1038/sj.ki.5000360

    Article  CAS  PubMed  Google Scholar 

  15. Hasegawa Y, Suzuki H, Altay O, Rolland W, Zhang JH (2013) Role of the sphingosine metabolism pathway on neurons against experimental cerebral ischemia in rats. Transl Stroke Res 4(5):524–532. doi:10.1007/s12975-013-0260-7

    Article  CAS  PubMed  Google Scholar 

  16. Choi JW, Gardell SE, Herr DR, Rivera R, Lee CW, Noguchi K, Teo ST, Yung YC et al (2010) FTY720 (fingolimod) efficacy in an animal model of multiple sclerosis requires astrocyte sphingosine 1-phosphate receptor 1 (S1P1) modulation. Proc Natl Acad Sci U S A 108(2):751–756. doi:10.1073/pnas.1014154108

    Article  PubMed  PubMed Central  Google Scholar 

  17. Sun N, Shen Y, Han W, Shi K, Wood K, Fu Y, Hao J, Liu Q et al (2016) Selective sphingosine-1-phosphate receptor 1 modulation attenuates experimental intracerebral hemorrhage. Stroke 47(7):1899–1906. doi:10.1161/STROKEAHA.115.012236

    Article  CAS  PubMed  Google Scholar 

  18. Graler MH, Goetzl EJ (2004) The immunosuppressant FTY720 down-regulates sphingosine 1-phosphate G-protein-coupled receptors. FASEB J 18(3):551–553. doi:10.1096/fj.03-0910fje

    Article  CAS  PubMed  Google Scholar 

  19. Oo ML, Thangada S, Wu MT, Liu CH, Macdonald TL, Lynch KR, Lin CY, Hla T (2007) Immunosuppressive and anti-angiogenic sphingosine 1-phosphate receptor-1 agonists induce ubiquitinylation and proteasomal degradation of the receptor. J Biol Chem 282(12):9082–9089. doi:10.1074/jbc.M610318200

    Article  CAS  PubMed  Google Scholar 

  20. Nussbaum C, Bannenberg S, Keul P, Gräler MH, Gonçalves-de-Albuquerque CF, Korhonen H, von Wnuck LK, Heusch G et al (2015) Sphingosine-1-phosphate receptor 3 promotes leukocyte rolling by mobilizing endothelial P-selectin. Nat Commun 6:6416. doi:10.1038/ncomms7416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Han JE, Lee EJ, Moon E, Ryu JH, Choi JW, Kim HS (2016) Matrix metalloproteinase-8 is a novel pathogenetic factor in focal cerebral ischemia. Mol Neurobiol 53(1):231–239. doi:10.1007/s12035-014-8996-y

    Article  CAS  PubMed  Google Scholar 

  22. Pan S, Mi Y, Pally C, Beerli C, Chen A, Guerini D, Hinterding K, Nuesslein-Hildesheim B et al (2006) A monoselective sphingosine-1-phosphate receptor-1 agonist prevents allograft rejection in a stringent rat heart transplantation model. Chem Biol 13(11):1227–1234. doi:10.1016/j.chembiol.2006.09.017

    Article  CAS  PubMed  Google Scholar 

  23. Gaire BP, Kwon OW, Park SH, Chun KH, Kim SY, Shin DY, Choi JW (2015) Neuroprotective effect of 6-paradol in focal cerebral ischemia involves the attenuation of neuroinflammatory responses in activated microglia. PLoS One 10(3):e0120203. doi:10.1371/journal.pone.0120203

    Article  PubMed  PubMed Central  Google Scholar 

  24. Cho KS, Lee EJ, Kim JN, Choi JW, Kim HY, Han SH, Ryu JH, Cheong JH et al (2015) Proteinase 3 induces neuronal cell death through microglial activation. Neurochem Res 40(11):2242–2251. doi:10.1007/s11064-015-1714-y

    Article  CAS  PubMed  Google Scholar 

  25. Boscia F, Gala R, Pannaccione A, Secondo A, Scorziello A, Di Renzo G, Annunziato L (2009) NCX1 expression and functional activity increase in microglia invading the infarct core. Stroke 40(11):3608–3617. doi:10.1161/STROKEAHA.109.557439

    Article  CAS  PubMed  Google Scholar 

  26. Ito D, Tanaka K, Suzuki S, Dembo T, Fukuuchi Y (2001) Enhanced expression of Iba1, ionized calcium-binding adapter molecule 1, after transient focal cerebral ischemia in rat brain. Stroke 32(5):1208–1215

    Article  CAS  PubMed  Google Scholar 

  27. Chu HX, Kim HA, Lee S, Moore JP, Chan CT, Vinh A, Gelderblom M, Arumugam TV et al (2014) Immune cell infiltration in malignant middle cerebral artery infarction: comparison with transient cerebral ischemia. J Cereb Blood Flow Metab 34(3):450–459. doi:10.1038/jcbfm.2013.217

    Article  CAS  PubMed  Google Scholar 

  28. Engelhardt B (2006) Molecular mechanisms involved in T cell migration across the blood-brain barrier. J Neural Transm (Vienna) 113(4):477–485. doi:10.1007/s00702-005-0409-y

    Article  CAS  Google Scholar 

  29. Lindsberg PJ, Carpen O, Paetau A, Karjalainen-Lindsberg ML, Kaste M (1996) Endothelial ICAM-1 expression associated with inflammatory cell response in human ischemic stroke. Circulation 94(5):939–945

    Article  CAS  PubMed  Google Scholar 

  30. Chiba K, Kataoka H, Seki N, Shimano K, Koyama M, Fukunari A, Sugahara K, Sugita T (2011) Fingolimod (FTY720), sphingosine 1-phosphate receptor modulator, shows superior efficacy as compared with interferon-beta in mouse experimental autoimmune encephalomyelitis. Int Immunopharmacol 11(3):366–372. doi:10.1016/j.intimp.2010.10.005

    Article  CAS  PubMed  Google Scholar 

  31. Chen A, Xiong LJ, Tong Y, Mao M (2013) The neuroprotective roles of BDNF in hypoxic ischemic brain injury. Biomed Rep 1(2):167–176. doi:10.3892/br.2012.48

    Article  CAS  PubMed  Google Scholar 

  32. Deogracias R, Yazdani M, Dekkers MP, Guy J, Ionescu MC, Vogt KE, Barde YA (2012) Fingolimod, a sphingosine-1 phosphate receptor modulator, increases BDNF levels and improves symptoms of a mouse model of Rett syndrome. Proc Natl Acad Sci U S A 109(35):14230–14235. doi:10.1073/pnas.1206093109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. O'Sullivan S, Dev KK (2016) Sphingosine-1-phosphate receptor therapies: advances in clinical trials for CNS-related diseases. Neuropharmacology. doi:10.1016/j.neuropharm.2016.11.006

    Google Scholar 

  34. Foster CA, Howard LM, Schweitzer A, Persohn E, Hiestand PC, Balatoni B, Reuschel R, Beerli C et al (2007) Brain penetration of the oral immunomodulatory drug FTY720 and its phosphorylation in the central nervous system during experimental autoimmune encephalomyelitis: consequences for mode of action in multiple sclerosis. J Pharmacol Exp Ther 323(2):469–475. doi:10.1124/jpet.107.127183

    Article  CAS  PubMed  Google Scholar 

  35. Galicia-Rosas G, Pikor N, Schwartz JA, Rojas O, Jian A, Summers-Deluca L, Ostrowski M, Nuesslein-Hildesheim B et al (2012) A sphingosine-1-phosphate receptor 1-directed agonist reduces central nervous system inflammation in a Plasmacytoid dendritic cell-dependent manner. J Immunol 189(7):3700–3706. doi:10.4049/jimmunol.1102261

    Article  CAS  PubMed  Google Scholar 

  36. Nayak D, Huo Y, Kwang WXT, Pushparaj PN, Kumar SD, Ling EA, Dheen ST (2010) Sphingosine kinase 1 regulates the expression of proinflammatory cytokines and nitric oxide in activated microglia. Neuroscience 166(1):132–144. doi:10.1016/j.neuroscience.2009.12.020

    Article  CAS  PubMed  Google Scholar 

  37. Gao F, Liu Y, Li X, Wang Y, Wei D, Jiang W (2012) Fingolimod (FTY720) inhibits neuroinflammation and attenuates spontaneous convulsions in lithium-pilocarpine induced status epilepticus in rat model. Pharmacol Biochem Behav 103(2):187–196. doi:10.1016/j.pbb.2012.08.025

    Article  CAS  PubMed  Google Scholar 

  38. Cipriani R, Chara JC, Rodriguez-Antiguedad A, Matute C (2015) FTY720 attenuates excitotoxicity and neuroinflammation. J Neuroinflammation 12:86. doi:10.1186/s12974-015-0308-6

    Article  PubMed  PubMed Central  Google Scholar 

  39. Noda H, Takeuchi H, Mizuno T, Suzumura A (2013) Fingolimod phosphate promotes the neuroprotective effects of microglia. J Neuroimmunol 256(1–2):13–18. doi:10.1016/j.jneuroim.2012.12.005

    Article  CAS  PubMed  Google Scholar 

  40. Sawano T, Watanabe F, Ishiguchi M, Doe N, Furuyama T, Inagaki S (2015) Effect of Sema4D on microglial function in middle cerebral artery occlusion mice. Glia 63(12):2249–2259. doi:10.1002/glia.22890

    Article  PubMed  Google Scholar 

  41. Jin R, Yang G, Li G (2010) Inflammatory mechanisms in ischemic stroke: role of inflammatory cells. J Leukoc Biol 87(5):779–789. doi:10.1189/jlb.1109766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kanazawa H, Ohsawa K, Sasaki Y, Kohsaka S, Imai Y (2002) Macrophage/microglia-specific protein Iba1 enhances membrane ruffling and Rac activation via phospholipase C-gamma-dependent pathway. J Biol Chem 277(22):20026–20032. doi:10.1074/jbc.M109218200

    Article  CAS  PubMed  Google Scholar 

  43. Li T, Pang S, Yu Y, Wu X, Guo J, Zhang S (2013) Proliferation of parenchymal microglia is the main source of microgliosis after ischaemic stroke. Brain 136(Pt 12):3578–3588. doi:10.1093/brain/awt287

    Article  PubMed  Google Scholar 

  44. Ladeby R, Wirenfeldt M, Dalmau I, Gregersen R, Garcia-Ovejero D, Babcock A, Owens T, Finsen B (2005) Proliferating resident microglia express the stem cell antigen CD34 in response to acute neural injury. Glia 50(2):121–131. doi:10.1002/glia.20159

    Article  PubMed  Google Scholar 

  45. Ajami B, Bennett JL, Krieger C, Tetzlaff W, Rossi FM (2007) Local self-renewal can sustain CNS microglia maintenance and function throughout adult life. Nat Neurosci 10(12):1538–1543. doi:10.1038/nn2014

    Article  CAS  PubMed  Google Scholar 

  46. Barreto GE, Sun X, Xu L, Giffard RG (2011) Astrocyte proliferation following stroke in the mouse depends on distance from the infarct. PLoS One 6(11):e27881. doi:10.1371/journal.pone.0027881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yang D, Sun YY, Bhaumik SK, Li Y, Baumann JM, Lin X, Zhang Y, Lin SH et al (2014) Blocking lymphocyte trafficking with FTY720 prevents inflammation-sensitized hypoxic-ischemic brain injury in newborns. J Neurosci 34(49):16467–16481. doi:10.1523/JNEUROSCI.2582-14.2014

    Article  PubMed  PubMed Central  Google Scholar 

  48. Jiao H, Wang Z, Liu Y, Wang P, Xue Y (2011) Specific role of tight junction proteins claudin-5, occludin, and ZO-1 of the blood–brain barrier in a focal cerebral ischemic insult. J Mol Neurosci 44(2):130–139. doi:10.1007/s12031-011-9496-4

    Article  CAS  PubMed  Google Scholar 

  49. Brunkhorst R, Kanaan N, Koch A, Ferreiros N, Mirceska A, Zeiner P, Mittelbronn M, Derouiche A et al (2013) FTY720 treatment in the convalescence period improves functional recovery and reduces reactive astrogliosis in photothrombotic stroke. PLoS One 8(7):e70124. doi:10.1371/journal.pone.0070124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Schuhmann MK, Krstic M, Kleinschnitz C, Fluri F (2016) Fingolimod (FTY720) reduces cortical infarction and neurological deficits during ischemic stroke through potential maintenance of microvascular patency. Curr Neurovasc Res 13(4):277–282

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Research Foundation (NRF) and Ministry of Health and Welfare funded by the Korean government to JWC [NRF-2014M3A9B6069339 and HI13C18200000].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tae-gyu Nam or Ji Woong Choi.

Ethics declarations

Conflicts of Interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

.

ESM 1

(DOCX 1885 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaire, B.P., Lee, CH., Sapkota, A. et al. Identification of Sphingosine 1-Phosphate Receptor Subtype 1 (S1P1) as a Pathogenic Factor in Transient Focal Cerebral Ischemia. Mol Neurobiol 55, 2320–2332 (2018). https://doi.org/10.1007/s12035-017-0468-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-017-0468-8

Keywords

Navigation