Skip to main content

Advertisement

Log in

Yorkie Regulates Neurodegeneration Through Canonical Pathway and Innate Immune Response

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Expansion of CAG repeats in certain genes has long been known to be associated with neurodegenerastion, but the quest to identity the underlying mechanisms is still on. Here, we analyzed the role of Yorkie, the coactivator of the Hippo pathway, and provide evidence to state that it is a robust genetic modifier of polyglutamine (PolyQ)-mediated neurodegeneration. Yorkie reduces the pathogenicity of inclusion bodies in the cell by activating cyclin E and bantam, rather than by preventing apoptosis through DIAP1. PolyQ aggregates inhibit Yorkie functioning at the protein, rather than the transcript level, and this is probably accomplished by the interaction between PolyQ and Yorkie. We show that PolyQ aggregates upregulate expression of antimicrobial peptides (AMPs) and Yorkie negatively regulates immune deficiency (IMD) and Toll pathways through relish and cactus, respectively, thus reducing AMPs and mitigating PolyQ affects. These studies strongly suggest a novel mechanism of suppression of PolyQ-mediated neurotoxicity by Yorkie through multiple channels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Mattson PM, Magnus T (2006) Ageing and neuronal vulnerability. Neuroscience 7:278–294

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Napoletano F, Simona O, Calamita P, Volpi V, Blanc E, Charroux B, Royet J, Fanto M (2011) Polyglutamine Atrophin provokes neurodegeneration in Drosophila by repressing fat. EMBO J 30:945–958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hoshino M, Qi M, Yoshimura N, Miyashita T, Tagawa K, Wada Y, Enokido Y, Marubuchi S et al (2006) Transcriptional repression induces a slowly progressive atypical neuronal death associated with changes of YAP isoforms and p73. J Cell Biol 172:589–604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Singh MD, Raj K, Sarkar S (2014) Drosophila Myc, a novel modifier suppresses the poly(Q) toxicity by modulating the level of CREB binding protein and histone acetylation. Neurobiol Dis 63:48–61

    Article  CAS  PubMed  Google Scholar 

  5. Kaltenbach LS, Romero E, Becklin RR, Chettier R, Bell R, Phansalkar A, Strand A, Torcassi C et al (2007) Huntingtin interacting proteins are genetic modifiers of neurodegeneration. PLoS Genet 3:e82

    Article  PubMed  PubMed Central  Google Scholar 

  6. Goehler H, Lalowski M, Stelzl U, Waelter S, Stroedicke M, Worm U, Droege A, Lindenberg KS et al (2004) A protein interaction network links GIT1, an enhancer of huntingtin aggregation, to Huntington’s disease. Mol Cell 15:853–865

    Article  CAS  PubMed  Google Scholar 

  7. Yadav S, Tapadia MG (2013) Neurodegeneration caused by polyglutamine expansion is regulated by P-glycoprotein in Drosophila melanogaster. Genetics 195:857–870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jia J, Zhang W, Wang B, Trinko R, Jiang J (2003) The Drosophila Ste20 family kinase dMST functions as a tumor suppressor by restricting cell proliferation and promoting apoptosis. Genes Dev 17:2514–2519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Justice RW, Zilian O, Woods DF, Noll M, Bryant PJ (1995) The Drosophila tumor suppressor gene warts encodes a homolog of human myotonic dystrophy kinase and is required for the control of cell shape and proliferation. Genes Dev 9:534–546

    Article  CAS  PubMed  Google Scholar 

  10. Pantalacci S, Tapon N, Leopold P (2003) The Salvador partner Hippo promotes apoptosis and cell-cycle exit in Drosophila. Nat. Cell Biol 5:921–927

    CAS  Google Scholar 

  11. Tapon N, Harvey KF, Bell DW, Wahrer DC, Schiripo TA, Haber D, Hariharan IK (2002) Salvador promotes both cell cycle exit and apoptosis in Drosophila and is mutated in human cancer cell lines. Cell 23:467–478

    Article  Google Scholar 

  12. Udan RS, Kango-Singh M, Nolo R, Tao C, Halder G (2003) Hippo promotes proliferation arrest and apoptosis in the Salvador/Warts pathway. Nat. Cell Biol 5:914–920

    CAS  Google Scholar 

  13. Wu S, Huang J, Dong J, Pan D (2003) Hippo encodes a Ste-20 family protein kinase that restricts cell proliferation and promotes apoptosis in conjunction with Salvador and warts. Cell 114:445–456

    Article  CAS  PubMed  Google Scholar 

  14. Huang J, Wu S, Barrera J, Matthews K, Pan D (2005) The Hippo signaling pathway coordinately regulates cell proliferation and apoptosis by inactivating Yorkie, the Drosophila homolog of YAP. Cell 122:421–434

    Article  CAS  PubMed  Google Scholar 

  15. Goulev Y, Fauny JD, Gonzalez-Marti B, Flagiello D, Silber J, Zider A (2008) SCALLOPED interacts with YORKIE, the nuclear effector of the hippo tumor-suppressor pathway in drosophila. Curr Biol 18:435–441

    Article  CAS  PubMed  Google Scholar 

  16. Wu S, Liu Y, Zheng Y, Dong J, Pan D (2008) The TEAD/TEF family protein scalloped mediates transcriptional output of the hippo growth-regulatory pathway. Dev Cell 14:388–398

    Article  CAS  PubMed  Google Scholar 

  17. Zhang X, Milton CC, Humbert PO, Harvey KF (2009) Transcriptional output of the Salvador/warts/hippo pathway is controlled in distinct fashions in Drosophila melanogaster and mammalian cell lines. Cancer Res 69:6033–6041

    Article  CAS  PubMed  Google Scholar 

  18. Dutta S, Baehrecke EH (2008) Warts is required for PI3K-regulated growth arrest, autophagy, and autophagic cell death in Drosophila. Curr Biol 18:1466–1475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hamaratoglu F, Gajewski K, Sansores-Garcia L, Morrison C, Tao C, Halder G (2009) The Hippo tumor-suppressor pathway regulates apical-domain size in parallel to tissue growth. J Cell Sci 122:2351–2359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jukam D, Desplan C (2011) Binary regulation of Hippo pathway by Merlin/NF2, Kibra, Lgl, and Melted specifies and maintains postmitotic neuronal fate. Dev Cell 15:874–887

    Article  Google Scholar 

  21. Emoto K, Parrish JZ, Jan LY, Jan YN (2006) The tumour suppressor Hippo acts with the NDR kinases in dendritic tiling and maintenance. Nature 443:210–213

    Article  CAS  PubMed  Google Scholar 

  22. Reddy BV, Rauskolb C, Irvine KD (2010) Influence of fat-hippo and notch signaling on the proliferation and differentiation of dDrosophila optic neuroepithelia. Development 137:2397–2408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kawamori H, Tai M, Sato M, Yasugi T, Tabata T (2011) Fat/Hippo pathway regulates the progress of neural differentiation signaling in the Drosophila optic lobe. Develop Growth Differ 53:653–667

    Article  CAS  Google Scholar 

  24. Olejniczak M, Urbanek MO, Krzyzosiak WJ (2015) The role of the immune system in triplet repeat expansion diseases. Mediators of Inflammation http://dx.doi.org/10.1155/2015/873860.

  25. Heneka MT, Carson MJ, El Khoury J, Landreth GE, Brosseron F, Feinstein DL, Jacobs AH, Wyss-Coray T et al (2015) Neuroinflammation in Alzheimer’s disease. Lancet Neurol 14:388–405

    Article  CAS  PubMed  Google Scholar 

  26. Petersen AJ, Katzenberger RJ, Wassarman DA (2013) The innate immune response transcription factor relish is necessary for neurodegeneration in a Drosophila model of ataxia-telangiectasia. Genetics 194:133–142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kim T, Kim Y (2005) Overview of innate immunity in Drosophila. J Biochem Mol Biol 38:121–127

    CAS  PubMed  Google Scholar 

  28. Cao Y, Chtarbanova S, Petersen AJ, Ganetzky B (2013) Dnr1 mutations cause neurodegeneration in Drosophila by activating the innate immune response in the brain. Proc Natl Acad Sci U S A 110:E1752–E1760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kazemi-Esfarjani P, Benzer S (2002) Suppression of polyglutamine toxicity by a Drosophila homolog of myeloid leukemia factor 1. Hum Mol Genet 11:2657–2672

    Article  CAS  PubMed  Google Scholar 

  30. Mallik M, Lakhotia SC (2009) RNAi for the large non-coding hsrω transcripts suppresses polyglutamine pathogenesis in Drosophila models. RNA Biol 6:464–478

    Article  CAS  PubMed  Google Scholar 

  31. Arya R, Lakhotia SC (2006) A simple nail polish imprint technique for examination of external morphology of Drosophila eyes. CurrSci 90:1179–1180

    Google Scholar 

  32. Verma P, Tapadia MG (2012) Immune response and anti-microbial peptides expression in Malpighian tubules of Drosophila melanogaster is under developmental regulation. PLoS One 7:e40714

    Article  PubMed  PubMed Central  Google Scholar 

  33. Paddibhatla I, Mark JL, Kalamarz ME, Ferrarese R, Govind S (2010) Role for sumoylation in systemic inflammation and immune homeostasis in drosophila larvae. PLoS Pathog 6:e1001234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Simon DK, Johns DR (1999) Mitochondrial disorders: clinical and genetic features. Annu Rev Med 50:111–127

    Article  CAS  PubMed  Google Scholar 

  35. Hackam AS, Hodgson JG, Singaraja R, Zhang T, Gan L, Gutekunst CA, Hersch SM, Hayden MR (1999) Evidence for both the nucleus and cytoplasm as subcellular sites of pathogenesis in Huntington’s disease in cell culture and in transgenic mice expressing mutant huntingtin. Philos Trans R Soc Lond Ser B Biol Sci 354:1047–1055

    Article  CAS  Google Scholar 

  36. Faber PW, Barnes GT, Srinidhi J, Chen J, Gusella JF, MacDonald ME (1998) Huntingtin interacts with a family of WW domain proteins. Hum Mol Genet 7:1463–1474

    Article  CAS  PubMed  Google Scholar 

  37. Knoblich JA, Sauer K, Jones L, Richardson H, Saint R, Lehner CF (1994) Cyclin E controls S phase progression and its down-regulation during Drosophila embryogenesis is required for the arrest of cell proliferation. Cell 77:1107–1120

    Article  Google Scholar 

  38. Hipfner DR, Weigmann K, Cohen SM (2002) The bantam gene regulates Drosophila growth. Genetics 161:1527–1537

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Brennecke J, Hipfner DR, Stark A, Russell RB, Cohen SM (2003) Bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell 4:25–36

    Article  Google Scholar 

  40. Stronach BE, Perrimon N (1999) Stress signaling in Drosophila. Oncogene 18:6172–6182

    Article  CAS  PubMed  Google Scholar 

  41. Chen F (2012) JNK-induced apoptosis, compensatory growth, and cancer stem cells. Cancer Res 72:379–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Dhanasekaran DN, Reddy EP (2008) JNK signaling in apoptosis. Oncogene 27:6245–6251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tan L, Schedl P, Song HJ, Garza D, Konsolaki M (2008) The Toll–>NF-kappaB signaling pathway mediates the neuropathological effects of the human Alzheimer’s Abeta42 polypeptide in Drosophila. PLoS One 3:e3966

    Article  PubMed  PubMed Central  Google Scholar 

  44. Petersen AJ, Rimkus SA, Wassarman DA (2012) ATM kinase inhibition in glial cells activates the innate immune response and causes neurodegeneration in Drosophila. Proc Natl Acad Sci U S A 109:E656–E664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hedengren M, Asling B, Dushay MS, Ando I, Ekengren S, Wihlborg M, Hultmark D (1999) Relish, a central factor in the control of humoral but not cellular immunity in Drosophila. Mol Cell 4:827–837

    Article  CAS  PubMed  Google Scholar 

  46. Valanne S, Wang J, Rämet M (2011) The Drosophila toll signaling pathway. J Immunol 186:649–656

    Article  CAS  PubMed  Google Scholar 

  47. Liu B, Zheng Y, Yin F, Yu J, Silverman N, Pan D (2016) Toll receptor-mediated hippo signaling controls innate immunity in Drosophila. Cell 164:406–419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Cha JH (2000) Transcriptional dysregulation in Huntington’s disease. Trends Neurosci 23:387–392

    Article  CAS  PubMed  Google Scholar 

  49. Sugars KL, Rubinsztein DC (2003) Transcriptional abnormalities in Huntington disease. Trends Genet 19:233–238

    Article  CAS  PubMed  Google Scholar 

  50. Salah Z, Alian A, Aqeilan RI (2012) WW domain-containing proteins: retrospectives and the future. Front Biosci 17:331–348

    Article  CAS  Google Scholar 

  51. Godin J, Poizat DG, Hickey MA, Maschat F, Humbert S (2010) Mutant huntingtin-impaired degradation of beta-catenin causes neurotoxicity in Huntington’s disease. EMBO J 29:2433–2445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Salah Z, Melino G, Aqeilan RI (2011) Negative regulation of the Hippo pathway by E3 ubiquitin ligase itch is sufficient to promote tumorigenicity. Cancer Res 71:2010–2020

    Article  CAS  PubMed  Google Scholar 

  53. Pan D (2010) The hippo signaling pathway in development and cancer. Dev Cell 19:491–505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Harvey K, Tapon N (2007) The Salvador-Warts-Hippo pathway—an emerging tumour-suppressor network. Nat Rev Cancer 7:182–191

    Article  CAS  PubMed  Google Scholar 

  55. Hansson JH (1995) A de novo missense mutation of the beta subunit of the epithelial sodium channel causes hypertension and Liddle syndrome, identifying a proline-rich segment critical for regulation of channel activity. Proc Natl Acad Sci U S A 92:11495–11499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Buschdorf JP, Strätling WH (2004) A WW domain binding region in methyl-CpG-binding protein MeCP2: impact on Rett syndrome. J Mol Med 82:135–143

    Article  CAS  PubMed  Google Scholar 

  57. Liu F, Li B, Tung EJ, Grundke-Iqbal I, Iqbal K, Gong CX (2007) Site-specific effects of tau phosphorylation on its microtubule assembly activity and self-aggregation. Eur J Neurosci 26:3429–3436

    Article  PubMed  PubMed Central  Google Scholar 

  58. Mandelkow EM, Mandelkow E (1998) Tau in Alzheimer’s disease. Trends Cell Biol 8:425–427

    Article  CAS  PubMed  Google Scholar 

  59. Morishima-Kawashima M, Hasegawa M, Takio K, Suzuki M, Yoshida H, Watanabe A, Titani K, Ihara Y (1995) Hyperphosphorylation of tau in PHF. Neurobiol Aging 16:365–380

    Article  CAS  PubMed  Google Scholar 

  60. Passani LA, Bedford MT, Faber PW, McGinnis KM, Sharp AH, Gusella JF, Vonsattel JP, MacDonald ME (2000) Huntingtin’s WW domain partners in Huntington’s disease post-mortem brain fulfill genetic criteria for direct involvement in Huntington’s disease pathogenesis. Hum Mol Genet 9:2175–2182

    Article  CAS  PubMed  Google Scholar 

  61. Dwivedi V, Tripathi BK, Mutsuddi M, Lakhotia SC (2013) Ayurvedic Amalaki Rasayana and Rasa-Sindoor suppress neurodegeneration in fly models of Huntington’s and Alzheimer’s diseases. Curr Sci 105:1711–1723

    Google Scholar 

  62. Thompson BJ, Cohen SM (2006) The Hippo pathway regulates the bantam microRNA to control cell proliferation and apoptosis in Drosophila. Cell 126:767–774

    Article  CAS  PubMed  Google Scholar 

  63. Akundi RA, Huang Z, Eason J, Pandya JD, Zhi L, Cass WA, Sullivan PG, Büeler H (2011) Increased mitochondrial calcium sensitivity and abnormal expression of innate immunity genes precede dopaminergic defects in Pink1-deficient mice. PLoS One 6:e16038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Cha GH, Kim S, Park J, Lee E, Kim M, Lee SB, Kim JM, Chung J (2005) Parkin negatively regulates JNK pathway in the dopaminergic neurons of Drosophila. Proc Natl Acad Sci U S A 102:10345–10350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Deng Y, Ren X, Yang L, Lin Y, Wu X (2003) A JNK-dependent pathway is required for TNFα-induced apoptosis. Cell 115:61–70

    Article  CAS  PubMed  Google Scholar 

  66. Hunot S, Vila M, Teismann P, Davis RJ, Hirsch EC, Przedborski S, Rakic P, Flavell RA (2004) JNK-mediated induction of cyclooxygenase 2 is required for neurodegeneration in a mouse model of Parkinson’s disease. Proc Natl Acad Sci U S A 101:665–670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Saporito MS, Brown EM, Miller MS, Carswell S (1999) CEP-1347/KT-7515, an inhibitor of c-Jun N-terminal kinase activation, attenuates the 1-methyl-4-phenyl tetrahydropyridine-mediated loss of nigrostriatal dopaminergic neurons in vivo. J Pharmacol Exp Ther 288:421–427

    CAS  PubMed  Google Scholar 

  68. Stewart CR, Stuart LM, Wilkinson K, van Gils JM, Deng J, Halle A, Rayner KJ, Boyer L (2010) CD36 ligands promotesterile inflammation through assembly of a Toll-like receptor 4 and 6 heterodimer. Nat Immunol 11:155–161

    Article  CAS  PubMed  Google Scholar 

  69. Bamberger ME, Harris ME, McDonald DR, Husemann J, Landreth GE (2003) A cell surface receptor complex for fibrillar beta-amyloid mediates microglial activation. J Neurosci 23:2665–2674

    CAS  PubMed  Google Scholar 

  70. Orcholskia ME, Zhanga Q, Bredesen DE (2011) Signaling via amyloid precursor-like proteins APLP1 and APLP2. J Alzheimers Dis 23(2011):689–699

    Google Scholar 

  71. Lee JK, Shin JH, Hwang SG, Gwag BJ, McKee AC, Lee J, Kowall NW, Ryu H (2013) MST1 functions as a key modulator of neurodegeneration in a mouse model of ALS. Proc Natl Acad Sci U S A 110:12066–12071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Plouffe SW, Hong AW, Guan K (2015) Disease implications of the Hippo/YAP pathway. Trends Mol Med 21:212–222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Cappellano G, Carecchio M, Fleetwood T, Magistrelli L, Cantello R, Dianzani U, Comi U (2013) Immunity and inflammation in neurodegenerative diseases. Am J Neurodegener Dis 2:89–107

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr. Duojia Pan (HHMI-John Hopkins School of Medicine) and Dr. Kenneth Irvine (HHMI-Ruetger State University, USA) for anti-Yorkie antibody. We thank Parsa Kazemi-Esfarjani and Bloomington Stock Centre for transgenic flies. This work was supported by research grant from Department of Science and Technology and Department of Biotechnology Government of India, New Delhi. We thank Department of Science and Technology, India, for providing National Facility for confocal microscope.

Authors’ Contribution

Conceived and designed the experiments: SKD and MGT. Performed the experiments: SKD. Analyzed the data: SKD and MGT. Wrote the paper: SKD and MGT. All authors reviewed the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madhu G. Tapadia.

Ethics declarations

Funding

This work was supported by Department of Science and Technology (DST) and Department of Biotechnology (DBT), Government of India, New Delhi, India.

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(PDF 331 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dubey, S.K., Tapadia, M.G. Yorkie Regulates Neurodegeneration Through Canonical Pathway and Innate Immune Response. Mol Neurobiol 55, 1193–1207 (2018). https://doi.org/10.1007/s12035-017-0388-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-017-0388-7

Keywords

Navigation