Skip to main content

Advertisement

Log in

Reelin Expression in Creutzfeldt-Jakob Disease and Experimental Models of Transmissible Spongiform Encephalopathies

Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Reelin is an extracellular glycoprotein involved in key cellular processes in developing and adult nervous system, including regulation of neuronal migration, synapse formation, and plasticity. Most of these roles are mediated by the intracellular phosphorylation of disabled-1 (Dab1), an intracellular adaptor molecule, in turn mediated by binding Reelin to its receptors. Altered expression and glycosylation patterns of Reelin in cerebrospinal and cortical extracts have been reported in Alzheimer’s disease. However, putative changes in Reelin are not described in natural prionopathies or experimental models of prion infection or toxicity. With this is mind, in the present study, we determined that Reelin protein and mRNA levels increased in CJD human samples and in mouse models of human prion disease in contrast to murine models of prion infection. However, changes in Reelin expression appeared only at late terminal stages of the disease, which prevent their use as an efficient diagnostic biomarker. In addition, increased Reelin in CJD and in in vitro models does not correlate with Dab1 phosphorylation, indicating failure in its intracellular signaling. Overall, these findings widen our understanding of the putative changes of Reelin in neurodegeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. D’Arcangelo G, Miao GG, Chen SC, Soares HD, Morgan JI, Curran T (1995) A protein related to extracellular matrix proteins deleted in the mouse mutant reeler. Nature 374(6524):719–723. doi:10.1038/374719a0

    Article  PubMed  Google Scholar 

  2. Soriano E, Del Rio JA (2005) The cells of cajal-retzius: still a mystery one century after. Neuron 46(3):389–394. doi:10.1016/j.neuron.2005.04.019

    Article  CAS  PubMed  Google Scholar 

  3. Groc L, Choquet D, Stephenson FA, Verrier D, Manzoni OJ, Chavis P (2007) NMDA receptor surface trafficking and synaptic subunit composition are developmentally regulated by the extracellular matrix protein reelin. J Neurosci 27(38):10165–10175. doi:10.1523/JNEUROSCI.1772-07.2007

    Article  CAS  PubMed  Google Scholar 

  4. Rogers JT, Weeber EJ (2008) Reelin and apoE actions on signal transduction, synaptic function and memory formation. Neuron Glia Biol 4(3):259–270. doi:10.1017/S1740925X09990184

    Article  PubMed  Google Scholar 

  5. Ohkubo N, Vitek MP, Morishima A, Suzuki Y, Miki T, Maeda N, Mitsuda N (2007) Reelin signals survival through Src-family kinases that inactivate BAD activity. J Neurochem 103(2):820–830. doi:10.1111/j.1471-4159.2007.04804.x

    Article  CAS  PubMed  Google Scholar 

  6. Frotscher M (2010) Role for reelin in stabilizing cortical architecture. Trends Neurosci 33(9):407–414. doi:10.1016/j.tins.2010.06.001

    Article  CAS  PubMed  Google Scholar 

  7. Pujadas L, Gruart A, Bosch C, Delgado L, Teixeira CM, Rossi D, de Lecea L, Martinez A et al (2010) Reelin regulates postnatal neurogenesis and enhances spine hypertrophy and long-term potentiation. J Neurosci 30(13):4636–4649. doi:10.1523/JNEUROSCI.5284-09.2010

    Article  CAS  PubMed  Google Scholar 

  8. Beffert U, Weeber EJ, Morfini G, Ko J, Brady ST, Tsai LH, Sweatt JD, Herz J (2004) Reelin and cyclin-dependent kinase 5-dependent signals cooperate in regulating neuronal migration and synaptic transmission. J Neurosci 24(8):1897–1906. doi:10.1523/JNEUROSCI.4084-03.2004

    Article  CAS  PubMed  Google Scholar 

  9. Stary CM, Xu L, Sun X, Ouyang YB, White RE, Leong J, Li J, Xiong X et al (2015) MicroRNA-200c contributes to injury from transient focal cerebral ischemia by targeting reelin. Stroke 46(2):551–556. doi:10.1161/STROKEAHA.114.007041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Won SJ, Kim SH, Xie L, Wang Y, Mao XO, Jin K, Greenberg DA (2006) Reelin-deficient mice show impaired neurogenesis and increased stroke size. Exp Neurol 198(1):250–259. doi:10.1016/j.expneurol.2005.12.008

    Article  CAS  PubMed  Google Scholar 

  11. Cuchillo-Ibanez I, Balmaceda V, Botella-Lopez A, Rabano A, Avila J, Saez-Valero J (2013) Beta-amyloid impairs reelin signaling. PLoS One 8(8):e72297. doi:10.1371/journal.pone.0072297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pujadas L, Rossi D, Andres R, Teixeira CM, Serra-Vidal B, Parcerisas A, Maldonado R, Giralt E et al (2014) Reelin delays amyloid-beta fibril formation and rescues cognitive deficits in a model of Alzheimer’s disease. Nat Commun 5:3443. doi:10.1038/ncomms4443

    Article  PubMed  Google Scholar 

  13. Durakoglugil MS, Chen Y, White CL, Kavalali ET, Herz J (2009) Reelin signaling antagonizes beta-amyloid at the synapse. Proc Natl Acad Sci U S A 106(37):15938–15943. doi:10.1073/pnas.0908176106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hiesberger T, Trommsdorff M, Howell BW, Goffinet A, Mumby MC, Cooper JA, Herz J (1999) Direct binding of reelin to VLDL receptor and ApoE receptor 2 induces tyrosine phosphorylation of disabled-1 and modulates tau phosphorylation. Neuron 24(2):481–489

    Article  CAS  PubMed  Google Scholar 

  15. Trommsdorff M, Gotthardt M, Hiesberger T, Shelton J, Stockinger W, Nimpf J, Hammer RE, Richardson JA et al (1999) Reeler/disabled-like disruption of neuronal migration in knockout mice lacking the VLDL receptor and ApoE receptor 2. Cell 97(6):689–701

    Article  CAS  PubMed  Google Scholar 

  16. Bock HH, Herz J (2003) Reelin activates SRC family tyrosine kinases in neurons. Curr Biol 13(1):18–26

    Article  CAS  PubMed  Google Scholar 

  17. Herz J, Chen Y (2006) Reelin, lipoprotein receptors and synaptic plasticity. Nat Rev Neurosci 7(11):850–859

    Article  CAS  PubMed  Google Scholar 

  18. Beffert U, Morfini G, Bock HH, Reyna H, Brady ST, Herz J (2002) Reelin-mediated signaling locally regulates protein kinase B/Akt and glycogen synthase kinase 3beta. J Biol Chem 277(51):49958–49964. doi:10.1074/jbc.M209205200

    Article  CAS  PubMed  Google Scholar 

  19. Park TJ, Curran T (2008) Crk and Crk-like play essential overlapping roles downstream of disabled-1 in the reelin pathway. J Neurosci 28(50):13551–13562. doi:10.1523/JNEUROSCI.4323-08.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ma Y, Wu X, Li X, Fu J, Shen J, Li X, Wang H (2012) Corticosterone regulates the expression of neuropeptide Y and reelin in MLO-Y4 cells. Mol Cells 33(6):611–616. doi:10.1007/s10059-012-0053-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Alvarez-Dolado M, Ruiz M, Del Rio JA, Alcantara S, Burgaya F, Sheldon M, Nakajima K, Bernal J et al (1999) Thyroid hormone regulates reelin and dab1 expression during brain development. J Neurosci 19(16):6979–6993

    CAS  PubMed  Google Scholar 

  22. Lussier AL, Caruncho HJ, Kalynchuk LE (2009) Repeated exposure to corticosterone, but not restraint, decreases the number of reelin-positive cells in the adult rat hippocampus. Neurosci Lett 460(2):170–174. doi:10.1016/j.neulet.2009.05.050

    Article  CAS  PubMed  Google Scholar 

  23. Buret L, van den Buuse M (2014) Corticosterone treatment during adolescence induces down-regulation of reelin and NMDA receptor subunit GLUN2C expression only in male mice: implications for schizophrenia. Int J Neuropsychopharmacol 17(8):1221–1232. doi:10.1017/S1461145714000121

    Article  CAS  PubMed  Google Scholar 

  24. Miettinen R, Riedel A, Kalesnykas G, Kettunen HP, Puolivali J, Soininen H, Arendt T (2005) Reelin-immunoreactivity in the hippocampal formation of 9-month-old wildtype mouse: effects of APP/PS1 genotype and ovariectomy. J Chem Neuroanat 30(2–3):105–118. doi:10.1016/j.jchemneu.2005.06.003

    Article  CAS  PubMed  Google Scholar 

  25. Rideau Batista Novais A, Guiramand J, Cohen-Solal C, Crouzin N, de Jesus Ferreira MC, Vignes M, Barbanel G, Cambonie G (2013) N-acetyl-cysteine prevents pyramidal cell disarray and reelin-immunoreactive neuron deficiency in CA3 after prenatal immune challenge in rats. Pediatr Res 73(6):750–755. doi:10.1038/pr.2013.40

    Article  PubMed  Google Scholar 

  26. Palacios-Garcia I, Lara-Vasquez A, Montiel JF, Diaz-Veliz GF, Sepulveda H, Utreras E, Montecino M, Gonzalez-Billault C et al (2015) Prenatal stress down-regulates reelin expression by methylation of its promoter and induces adult behavioral impairments in rats. PLoS One 10(2):e0117680. doi:10.1371/journal.pone.0117680

    Article  PubMed  PubMed Central  Google Scholar 

  27. Herring A, Donath A, Yarmolenko M, Uslar E, Conzen C, Kanakis D, Bosma C, Worm K et al (2012) Exercise during pregnancy mitigates Alzheimer-like pathology in mouse offspring. FASEB J 26(1):117–128. doi:10.1096/fj.11-193193

    Article  CAS  PubMed  Google Scholar 

  28. Cotter D, Pariante CM (2002) Stress and the progression of the developmental hypothesis of schizophrenia. The British Journal of Psychiatry: The Journal of Mental Science 181:363–365

    Article  Google Scholar 

  29. Pompili A, Arnone B, Gasbarri A (2012) Estrogens and memory in physiological and neuropathological conditions. Psychoneuroendocrinology 37(9):1379–1396. doi:10.1016/j.psyneuen.2012.01.007

    Article  CAS  PubMed  Google Scholar 

  30. Tareen RS, Kamboj MK (2012) Role of endocrine factors in autistic spectrum disorders. Pediatr Clin N Am 59(1):75–88 . doi:10.1016/j.pcl.2011.10.013x

    Article  Google Scholar 

  31. Forero DA, Casadesus G, Perry G, Arboleda H (2006) Synaptic dysfunction and oxidative stress in Alzheimer’s disease: emerging mechanisms. J Cell Mol Med 10(3):796–805

    Article  CAS  PubMed  Google Scholar 

  32. Barron AM, Pike CJ (2012) Sex hormones, aging, and Alzheimer’s disease. Front Biosci 4:976–997

    Google Scholar 

  33. Pamplona R, Naudi A, Gavin R, Pastrana MA, Sajnani G, Ilieva EV, Del Rio JA, Portero-Otin M et al (2008) Increased oxidation, glycoxidation, and lipoxidation of brain proteins in prion disease. Free Radic Biol Med 45(8):1159–1166. doi:10.1016/j.freeradbiomed.2008.07.009

    Article  CAS  PubMed  Google Scholar 

  34. Fatemi SH, Kroll JL, Stary JM (2001) Altered levels of reelin and its isoforms in schizophrenia and mood disorders. Neuroreport 12(15):3209–3215

    Article  CAS  PubMed  Google Scholar 

  35. Fatemi SH, Stary JM, Egan EA (2002) Reduced blood levels of reelin as a vulnerability factor in pathophysiology of autistic disorder. Cell Mol Neurobiol 22(2):139–152

    Article  CAS  PubMed  Google Scholar 

  36. Herring A, Donath A, Steiner KM, Widera MP, Hamzehian S, Kanakis D, Kolble K, ElAli A et al (2012) Reelin depletion is an early phenomenon of Alzheimer’s pathology. J Alzheimers Dis 30(4):963–979. doi:10.3233/JAD-2012-112069

    PubMed  Google Scholar 

  37. Botella-Lopez A, Burgaya F, Gavin R, Garcia-Ayllon MS, Gomez-Tortosa E, Pena-Casanova J, Urena JM, Del Rio JA et al (2006) Reelin expression and glycosylation patterns are altered in Alzheimer’s disease. Proc Natl Acad Sci U S A 103(14):5573–5578. doi:10.1073/pnas.0601279103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Saez-Valero J, Costell M, Sjogren M, Andreasen N, Blennow K, Luque JM (2003) Altered levels of cerebrospinal fluid reelin in frontotemporal dementia and Alzheimer’s disease. J Neurosci Res 72(1):132–136. doi:10.1002/jnr.10554

    Article  CAS  PubMed  Google Scholar 

  39. Knuesel I, Nyffeler M, Mormede C, Muhia M, Meyer U, Pietropaolo S, Yee BK, Pryce CR et al (2009) Age-related accumulation of reelin in amyloid-like deposits. Neurobiol Aging 30(5):697–716. doi:10.1016/j.neurobiolaging.2007.08.011

    Article  CAS  PubMed  Google Scholar 

  40. Schiffmann SN, Bernier B, Goffinet AM (1997) Reelin mRNA expression during mouse brain development. Eur J Neurosci 9(5):1055–1071

    Article  CAS  PubMed  Google Scholar 

  41. Krstic D, Pfister S, Notter T, Knuesel I (2013) Decisive role of reelin signaling during early stages of Alzheimer’s disease. Neuroscience 246:108–116. doi:10.1016/j.neuroscience.2013.04.042

    Article  CAS  PubMed  Google Scholar 

  42. Chin J, Massaro CM, Palop JJ, Thwin MT, Yu GQ, Bien-Ly N, Bender A, Mucke L (2007) Reelin depletion in the entorhinal cortex of human amyloid precursor protein transgenic mice and humans with Alzheimer’s disease. J Neurosci 27(11):2727–2733. doi:10.1523/JNEUROSCI.3758-06.2007

    Article  CAS  PubMed  Google Scholar 

  43. Wirths O, Multhaup G, Czech C, Blanchard V, Tremp G, Pradier L, Beyreuther K, Bayer TA (2001) Reelin in plaques of beta-amyloid precursor protein and presenilin-1 double-transgenic mice. Neurosci Lett 316(3):145–148

    Article  CAS  PubMed  Google Scholar 

  44. Doehner J, Madhusudan A, Konietzko U, Fritschy JM, Knuesel I (2010) Co-localization of reelin and proteolytic AbetaPP fragments in hippocampal plaques in aged wild-type mice. J Alzheimers Dis 19(4):1339–1357. doi:10.3233/JAD-2010-1333

    Article  CAS  PubMed  Google Scholar 

  45. Kocherhans S, Madhusudan A, Doehner J, Breu KS, Nitsch RM, Fritschy JM, Knuesel I (2010) Reduced reelin expression accelerates amyloid-beta plaque formation and tau pathology in transgenic Alzheimer’s disease mice. J Neurosci 30(27):9228–9240. doi:10.1523/JNEUROSCI.0418-10.2010

    Article  CAS  PubMed  Google Scholar 

  46. Botella-Lopez A, Cuchillo-Ibanez I, Cotrufo T, Mok SS, Li QX, Barquero MS, Dierssen M, Soriano E et al (2010) Beta-amyloid controls altered reelin expression and processing in Alzheimer’s disease. Neurobiol Dis 37(3):682–691. doi:10.1016/j.nbd.2009.12.006

    Article  CAS  PubMed  Google Scholar 

  47. Lane-Donovan C, Philips GT, Wasser CR, Durakoglugil MS, Masiulis I, Upadhaya A, Pohlkamp T, Coskun C et al (2015) Reelin protects against amyloid beta toxicity in vivo. Sci Signal 8(384):ra67. doi:10.1126/scisignal.aaa6674

    Article  PubMed  PubMed Central  Google Scholar 

  48. Herrmann US, Sonati T, Falsig J, Reimann RR, Dametto P, O’Connor T, Li B, Lau A et al (2015) Prion infections and anti-PrP antibodies trigger converging neurotoxic pathways. PLoS Pathog 11(2):e1004662. doi:10.1371/journal.ppat.1004662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gavin R, Urena J, Rangel A, Pastrana MA, Requena JR, Soriano E, Aguzzi A, Del Rio JA (2008) Fibrillar prion peptide PrP(106-126) treatment induces Dab1 phosphorylation and impairs APP processing and Abeta production in cortical neurons. Neurobiol Dis 30(2):243–254. doi:10.1016/j.nbd.2008.02.001

    Article  CAS  PubMed  Google Scholar 

  50. Gavin R, Ferrer I, del Rio JA (2010) Involvement of Dab1 in APP processing and beta-amyloid deposition in sporadic Creutzfeldt-Jakob patients. Neurobiol Dis 37(2):324–329. doi:10.1016/j.nbd.2009.10.010

    Article  CAS  PubMed  Google Scholar 

  51. Bueler H, Fischer M, Lang Y, Bluethmann H, Lipp HP, DeArmond SJ, Prusiner SB, Aguet M et al (1992) Normal development and behaviour of mice lacking the neuronal cell-surface PrP protein. Nature 356(6370):577–582

    Article  CAS  PubMed  Google Scholar 

  52. Fischer M, Rulicke T, Raeber A, Sailer A, Moser M, Oesch B, Brandner S, Aguzzi A et al (1996) Prion protein (PrP) with amino-proximal deletions restoring susceptibility of PrP knockout mice to scrapie. EMBO J 15(6):1255–1264

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Steele AD, Emsley JG, Ozdinler PH, Lindquist S, Macklis JD (2006) Prion protein (PrPc) positively regulates neural precursor proliferation during developmental and adult mammalian neurogenesis. Proc Natl Acad Sci U S A 103(9):3416–3421. doi:10.1073/pnas.0511290103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ordonez-Gutierrez L, Torres JM, Gavin R, Anton M, Arroba-Espinosa AI, Espinosa JC, Vergara C, Del Rio JA et al (2013) Cellular prion protein modulates beta-amyloid deposition in aged APP/PS1 transgenic mice. Neurobiol Aging 34(12):2793–2804. doi:10.1016/j.neurobiolaging.2013.05.019

    Article  CAS  PubMed  Google Scholar 

  55. Cassard H, Torres JM, Lacroux C, Douet JY, Benestad SL, Lantier F, Lugan S, Lantier I et al (2014) Evidence for zoonotic potential of ovine scrapie prions. Nat Commun 5:5821. doi:10.1038/ncomms6821

    Article  CAS  PubMed  Google Scholar 

  56. Padilla D, Beringue V, Espinosa JC, Andreoletti O, Jaumain E, Reine F, Herzog L, Gutierrez-Adan A et al (2011) Sheep and goat BSE propagate more efficiently than cattle BSE in human PrP transgenic mice. PLoS Pathog 7(3):e1001319. doi:10.1371/journal.ppat.1001319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Vilches S, Vergara C, Nicolas O, Mata A, Del Rio JA, Gavin R (2015) Domain-specific activation of death-associated intracellular signalling cascades by the cellular prion protein in neuroblastoma cells. Mol Neurobiol. doi:10.1007/s12035-015-9360-6

    PubMed  Google Scholar 

  58. Carulla P, Bribian A, Rangel A, Gavin R, Ferrer I, Caelles C, Del Rio JA, Llorens F (2011) Neuroprotective role of PrPC against kainate-induced epileptic seizures and cell death depends on the modulation of JNK3 activation by GluR6/7-PSD-95 binding. Mol Biol Cell 22(17):3041–3054. doi:10.1091/mbc.E11-04-0321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Mingorance A, Fontana X, Sole M, Burgaya F, Urena JM, Teng FY, Tang BL, Hunt D et al (2004) Regulation of Nogo and Nogo receptor during the development of the entorhino-hippocampal pathway and after adult hippocampal lesions. Mol Cell Neurosci 26(1):34–49. doi:10.1016/j.mcn.2004.01.001

    Article  CAS  PubMed  Google Scholar 

  60. Llorens F, Zafar S, Ansoleaga B, Shafiq M, Blanco R, Carmona M, Grau-Rivera O, Nos C et al (2015) Subtype and regional regulation of prion biomarkers in sporadic Creutzfeldt-Jakob disease. Neuropathol Appl Neurobiol 41(5):631–645. doi:10.1111/nan.12175

    Article  CAS  PubMed  Google Scholar 

  61. Sandberg MK, Al-Doujaily H, Sharps B, De Oliveira MW, Schmidt C, Richard-Londt A, Lyall S, Linehan JM et al (2014) Prion neuropathology follows the accumulation of alternate prion protein isoforms after infective titre has peaked. Nat Commun 5:4347. doi:10.1038/ncomms5347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Forloni G, Angeretti N, Chiesa R, Monzani E, Salmona M, Bugiani O, Tagliavini F (1993) Neurotoxicity of a prion protein fragment. Nature 362(6420):543–546

    Article  CAS  PubMed  Google Scholar 

  63. Brown DR (2000) Prion protein peptides: optimal toxicity and peptide blockade of toxicity. Mol Cell Neurosci 15(1):66–78

    Article  CAS  PubMed  Google Scholar 

  64. Vilches S, Vergara C, Nicolas O, Sanclimens G, Merino S, Varon S, Acosta GA, Albericio F et al (2013) Neurotoxicity of prion peptides mimicking the central domain of the cellular prion protein. PLoS One 8(8):e70881. doi:10.1371/journal.pone.0070881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Vassallo N (2009) Properties and pathogenicity of prion-derived peptides. Protein Pept Lett 16(3):230–238

    Article  CAS  PubMed  Google Scholar 

  66. Gavin R, Braun N, Nicolas O, Parra B, Urena JM, Mingorance A, Soriano E, Torres JM et al (2005) PrP(106-126) activates neuronal intracellular kinases and Egr1 synthesis through activation of NADPH-oxidase independently of PrPc. FEBS Lett 579(19):4099–4106. doi:10.1016/j.febslet.2005.06.037

    Article  CAS  PubMed  Google Scholar 

  67. Duit S, Mayer H, Blake SM, Schneider WJ, Nimpf J (2010) Differential functions of ApoER2 and very low density lipoprotein receptor in reelin signaling depend on differential sorting of the receptors. J Biol Chem 285(7):4896–4908. doi:10.1074/jbc.M109.025973

    Article  CAS  PubMed  Google Scholar 

  68. Schneider B, Mutel V, Pietri M, Ermonval M, Mouillet-Richard S, Kellermann O (2003) NADPH oxidase and extracellular regulated kinases 1/2 are targets of prion protein signaling in neuronal and non neuronal cells. Proc Natl Acad Sci U S A 100(23):13326–13331. doi:10.1073/pnas.2235648100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Pietri M, Caprini A, Mouillet-Richard S, Pradines E, Ermonval M, Grassi J, Kellermann O, Schneider B (2006) Overstimulation of PrPC signaling pathways by prion peptide 106-126 causes oxidative injury of bioaminergic neuronal cells. J Biol Chem 281(38):28470–28479. doi:10.1074/jbc.M602774200

    Article  CAS  PubMed  Google Scholar 

  70. Vilches S, Vergara C, Nicolas O, Mata A, Del Rio JA, Gavin R (2016) Domain-specific activation of death-associated intracellular signalling cascades by the cellular prion protein in neuroblastoma cells. Mol Neurobiol 53(7):4438–4448. doi:10.1007/s12035-015-9360-6

    Article  CAS  PubMed  Google Scholar 

  71. Alcantara S, Ruiz M, D’Arcangelo G, Ezan F, de Lecea L, Curran T, Sotelo C, Soriano E (1998) Regional and cellular patterns of reelin mRNA expression in the forebrain of the developing and adult mouse. J Neurosci 18(19):7779–7799

    CAS  PubMed  Google Scholar 

  72. Guentchev M, Groschup MH, Kordek R, Liberski PP, Budka H (1998) Severe, early and selective loss of a subpopulation of GABAergic inhibitory neurons in experimental transmissible spongiform encephalopathies. Brain Pathol 8(4):615–623

    Article  CAS  PubMed  Google Scholar 

  73. Cuchillo-Ibanez I, Balmaceda V, Mata-Balaguer T, Lopez-Font I, Saez-Valero J (2016) Reelin in Alzheimer’s disease, increased levels but impaired signaling: when more is less. J Alzheimers Dis. doi:10.3233/JAD-151193

    PubMed  Google Scholar 

  74. Stranahan AM, Haberman RP, Gallagher M (2011) Cognitive decline is associated with reduced reelin expression in the entorhinal cortex of aged rats. Cereb Cortex 21(2):392–400. doi:10.1093/cercor/bhq106

    Article  PubMed  Google Scholar 

  75. Stranahan AM, Salas-Vega S, Jiam NT, Gallagher M (2011) Interference with reelin signaling in the lateral entorhinal cortex impairs spatial memory. Neurobiol Learn Mem 96(2):150–155. doi:10.1016/j.nlm.2011.03.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Devanathan V, Jakovcevski I, Santuccione A, Li S, Lee HJ, Peles E, Leshchyns’ka I, Sytnyk V et al (2010) Cellular form of prion protein inhibits reelin-mediated shedding of Caspr from the neuronal cell surface to potentiate Caspr-mediated inhibition of neurite outgrowth. J Neurosci 30(27):9292–9305. doi:10.1523/JNEUROSCI.5657-09.2010

    Article  CAS  PubMed  Google Scholar 

  77. Rangel A, Madronal N, Gruart A, Gavin R, Llorens F, Sumoy L, Torres JM, Delgado-Garcia JM et al (2009) Regulation of GABA(a) and glutamate receptor expression, synaptic facilitation and long-term potentiation in the hippocampus of prion mutant mice. PLoS One 4(10):e7592. doi:10.1371/journal.pone.0007592

    Article  PubMed  PubMed Central  Google Scholar 

  78. Carulla P, Llorens F, Matamoros-Angles A, Aguilar-Calvo P, Espinosa JC, Gavin R, Ferrer I, Legname G et al (2015) Involvement of PrP(C) in kainate-induced excitotoxicity in several mouse strains. Sci Rep 5:11971. doi:10.1038/srep11971

    Article  PubMed  PubMed Central  Google Scholar 

  79. Benvegnu S, Roncaglia P, Agostini F, Casalone C, Corona C, Gustincich S, Legname G (2011) Developmental influence of the cellular prion protein on the gene expression profile in mouse hippocampus. Physiol Genomics 43(12):711–725. doi:10.1152/physiolgenomics.00205.2010

    Article  CAS  PubMed  Google Scholar 

  80. Rubenstein R, Chang B, Petersen R, Chiu A, Davies P (2015) T-tau and P-tau in brain and blood from natural and experimental prion diseases. PLoS One 10(12):e0143103. doi:10.1371/journal.pone.0143103

    Article  PubMed  PubMed Central  Google Scholar 

  81. Simon D, Herva ME, Benitez MJ, Garrido JJ, Rojo AI, Cuadrado A, Torres JM, Wandosell F (2014) Dysfunction of the PI3K-Akt-GSK-3 pathway is a common feature in cell culture and in vivo models of prion disease. Neuropathol Appl Neurobiol 40(3):311–326. doi:10.1111/nan.12066

    Article  CAS  PubMed  Google Scholar 

  82. Newaz K, Sriram K, Bera D (2015) Identification of major signaling pathways in prion disease progression using network analysis. PLoS One 10(12):e0144389. doi:10.1371/journal.pone.0144389

    Article  PubMed  PubMed Central  Google Scholar 

  83. Rizzardini M, Chiesa R, Angeretti N, Lucca E, Salmona M, Forloni G, Cantoni L (1997) Prion protein fragment 106-126 differentially induces heme oxygenase-1 mRNA in cultured neurons and astroglial cells. J Neurochem 68(2):715–720

    Article  CAS  PubMed  Google Scholar 

  84. Keshvara L, Magdaleno S, Benhayon D, Curran T (2002) Cyclin-dependent kinase 5 phosphorylates disabled 1 independently of reelin signaling. J Neurosci 22(12):4869–4877

    CAS  PubMed  Google Scholar 

  85. Llorens F, Schmitz M, Karch A, Cramm M, Lange P, Gherib K, Varges D, Schmidt C et al (2015) Comparative analysis of cerebrospinal fluid biomarkers in the differential diagnosis of neurodegenerative dementia. Alzheimers Dement. doi:10.1016/j.jalz.2015.10.009

    PubMed  Google Scholar 

  86. Schmitz M, Ebert E, Stoeck K, Karch A, Collins S, Calero M, Sklaviadis T, Laplanche JL et al (2015) Validation of 14-3-3 protein as a marker in sporadic Creutzfeldt-Jakob disease diagnostic. Mol Neurobiol. doi:10.1007/s12035-015-9167-5

    PubMed Central  Google Scholar 

  87. Miyashita A, Hatsuta H, Kikuchi M, Nakaya A, Saito Y, Tsukie T, Hara N, Ogishima S et al (2014) Genes associated with the progression of neurofibrillary tangles in Alzheimer’s disease. Transl Psychiatry 4:e396. doi:10.1038/tp.2014.35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Ferrer I (2002) Synaptic pathology and cell death in the cerebellum in Creutzfeldt-Jakob disease. Cerebellum 1(3):213–222. doi:10.1080/14734220260418448

    Article  CAS  PubMed  Google Scholar 

  89. Clinton J, Forsyth C, Royston MC, Roberts GW (1993) Synaptic degeneration is the primary neuropathological feature in prion disease: a preliminary study. Neuroreport 4(1):65–68

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Tom Yohannan for the editorial advice and M. Segura-Feliu for the technical assistance. We thank members of the Del Río, Torres, Requena, Zerr and Ferrer groups for stimulating discussions and ideas. We thank members of José Luis Labandeira laboratory (CIMUS) for helping us with the histological processing of the inoculated mice. We also thank Eduardo Soriano for the gift of the reeler mice and Tom Curran for the gift of the Reln in situ probe. This research was supported by grants from the Spanish Ministry of Economy and Competitiveness (MINECO) (BFU2015-67777-R and TEC2015-72718-EXP), the Spanish prion network (Prionet Spain, AGL2015-71764-REDT), the Generalitat de Catalunya (SGR2014-1218), CIBERNED (PI2014/02-4 (Rapid dementias) and PRY-14-114), and La Caixa Obra Social Foundation, La Marató de TV3 to JADR. R.G. was supported by Fondo de Investigaciones Sanitarias (FIS, PI11-00075). I.F. was funded by the Ministerio de Ciencia e Innovación, Instituto de Salud Carlos III—Fondos FEDER, a way to build Europe FIS grants PI14/00757, and CIBERNED (PI2014/02-4). JM.T. was supported by Spanish Ministry Economy and Competitiveness (RTA2012-00004 and AGL2012-37988-C04 projects). J.R.R. was supported by a grant from the Spanish Ministry of Economy and Competitiveness (MINECO) (BFU2013-48436-C2-1-P). I.Z. received support by the Robert-Koch-Institute through funds of Federal Ministry of Health (grant no. 1369-341) and DZNE (German Center for Neurodegenerative Diseases). A.M. was supported by a fellowship from the Spanish Ministry of Economy and Competitiveness. S.V was supported by a Juan de la Cierva contract of the Spanish Ministry of Science and Innovation (MICIM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Antonio del Río.

Ethics declarations

Ethics Statement

All experiments were performed under the guidelines and protocols of the Ethical Committee for Animal Experimentation (CEEA) of the University of Barcelona, and the protocol for the use of animals in this study was reviewed and approved by the CEEA of the University of Barcelona (CEEA approval no. 276/16 and 141/15).

Experiments were approved by the Committee on the Ethics of Animal Experiments of the author’s institutions (INIA and INRA; and University of Santiago de Compostela, 15005AE/12/FUN01/PAT05/JRR3).

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Agata Mata and Laura Urrea contributed equally to this study.

Electronic supplementary material

Fig S1

Determination of PrPC expression in primary cortical neurons at different DIVs. (JPEG 1190 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mata, A., Urrea, L., Vilches, S. et al. Reelin Expression in Creutzfeldt-Jakob Disease and Experimental Models of Transmissible Spongiform Encephalopathies. Mol Neurobiol 54, 6412–6425 (2017). https://doi.org/10.1007/s12035-016-0177-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-0177-8

Keywords

Navigation