Skip to main content

Advertisement

Log in

A Systematic RNAi Screen of Neuroprotective Genes Identifies Novel Modulators of Alpha-Synuclein-Associated Effects in Transgenic Caenorhabditis elegans

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Parkinson’s disease (PD) is the second most common progressive neurodegenerative disorder, defined clinically by degeneration of dopaminergic neurons and the development of neuronal Lewy bodies. Current treatments of PD are inadequate due to a limited understanding of molecular events of the disease, thus calling for intense research efforts towards identification of novel therapeutic targets. We carried out the present studies towards identifying novel genetic modulators of PD-associated effects employing a transgenic Caenorhabditis elegans model expressing human alpha-synuclein. Employing a systematic RNA interference (RNAi)-based screening approach, we studied a set of neuroprotective genes of C. elegans with an aim of identifying genes that exhibit protective function under alpha-synuclein expression conditions. Our results reveal a novel set of alpha-synuclein effector genes that modulate alpha-synuclein aggregation and associated effects. The identified genes include those from various gene families including histone demethylase, lactate dehydrogenase, small ribosomal subunit SA protein, cytoskeletal protein, collapsin response mediator protein, and choline kinase. The functional characterization of these genes reveals involvement of signaling mechanisms such as Daf-16 and acetylcholine signaling. Further elucidation of mechanistic pathways associated with these genes will yield additional insights into mediators of alpha-synuclein-induced cytotoxicity and cell death, thereby helping in the identification of potential therapeutic targets for PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Petrucci S, Consoli F, Valente EM (2014) Parkinson disease genetics: a "continuum" from Mendelian to multifactorial inheritance. Curr Mol Med

  2. Dai C, Liang D, Li H, Sasaki M, Dawson TM, Dawson VL (2010) Functional identification of neuroprotective molecules. PLoS One 5(11):e15008. doi:10.1371/journal.pone.0015008

    Article  PubMed  PubMed Central  Google Scholar 

  3. Harris TW, Chen N, Cunningham F, Tello-Ruiz M, Antoshechkin I, Bastiani C, Bieri T, Blasiar D et al (2004) WormBase: a multi-species resource for nematode biology and genomics. Nucleic Acids Res 32(Database issue):D411–D417. doi:10.1093/nar/gkh066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Harrington AJ, Hamamichi S, Caldwell GA, Caldwell KA (2010) C. elegans as a model organism to investigate molecular pathways involved with Parkinson’s disease. Dev Dyn 239(5):1282–1295. doi:10.1002/dvdy.22231

    CAS  PubMed  Google Scholar 

  5. Schmidt E, Seifert M, Baumeister R (2007) Caenorhabditis elegans as a model system for Parkinson’s disease. Neurodegener Dis 4(2–3):199–217. doi:10.1159/000101845

    Article  PubMed  Google Scholar 

  6. Nass R, Blakely RD (2003) The Caenorhabditis elegans dopaminergic system: opportunities for insights into dopamine transport and neurodegeneration. Annu Rev Pharmacol Toxicol 43:521–544. doi:10.1146/annurev.pharmtox.43.100901.135934100901.135934

    Article  CAS  PubMed  Google Scholar 

  7. Benedetto A, Au C, Aschner M (2009) Manganese-induced dopaminergic neurodegeneration: insights into mechanisms and genetics shared with Parkinson’s disease. Chem Rev 109(10):4862–4884. doi:10.1021/cr800536y

    Article  CAS  PubMed  Google Scholar 

  8. Gitler AD, Chesi A, Geddie ML, Strathearn KE, Hamamichi S, Hill KJ, Caldwell KA, Caldwell GA et al (2009) Alpha-synuclein is part of a diverse and highly conserved interaction network that includes PARK9 and manganese toxicity. Nat Genet 41(3):308–315. doi:10.1038/ng.300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hamamichi S, Rivas RN, Knight AL, Cao S, Caldwell KA, Caldwell GA (2008) Hypothesis-based RNAi screening identifies neuroprotective genes in a Parkinson’s disease model. Proc Natl Acad Sci U S A 105(2):728–733. doi:10.1073/pnas.0711018105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sakaguchi-Nakashima A, Meir JY, Jin Y, Matsumoto K, Hisamoto N (2007) LRK-1, a C. elegans PARK8-related kinase, regulates axonal-dendritic polarity of SV proteins. Curr Biol 17(7):592–598. doi:10.1016/j.cub.2007.01.074

    Article  CAS  PubMed  Google Scholar 

  11. Samann J, Hegermann J, von Gromoff E, Eimer S, Baumeister R, Schmidt E (2009) Caenorhabditis elegans LRK-1 and PINK-1 act antagonistically in stress response and neurite outgrowth. J Biol Chem 284(24):16482–16491. doi:10.1074/jbc.M808255200

    Article  PubMed  PubMed Central  Google Scholar 

  12. Ved R, Saha S, Westlund B, Perier C, Burnam L, Sluder A, Hoener M, Rodrigues CM et al (2005) Similar patterns of mitochondrial vulnerability and rescue induced by genetic modification of alpha-synuclein, parkin, and DJ-1 in Caenorhabditis elegans. J Biol Chem 280(52):42655–42668. doi:10.1074/jbc.M505910200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77(1):71–94

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Jadiya P, Nazir A (2014) A pre- and co-knockdown of RNAseT enzyme, Eri-1, enhances the efficiency of RNAi induced gene silencing in Caenorhabditis elegans. PLoS One 9(1):e87635. doi:10.1371/journal.pone.0087635

    Article  PubMed  PubMed Central  Google Scholar 

  15. Jadiya P, Khan A, Sammi SR, Kaur S, Mir SS, Nazir A (2011) Anti-Parkinsonian effects of Bacopa monnieri: insights from transgenic and pharmacological Caenorhabditis elegans models of Parkinson’s disease. Biochem Biophys Res Commun 413(4):605–610. doi:10.1016/j.bbrc.2011.09.010

    Article  CAS  PubMed  Google Scholar 

  16. Jadiya P, Nazir A (2012) Environmental toxicants as extrinsic epigenetic factors for parkinsonism: studies employing transgenic C. elegans model. CNS Neurol Disord Drug Targets 11(8):976–983

    Article  CAS  PubMed  Google Scholar 

  17. Sashidhara KV, Modukuri RK, Jadiya P, Dodda RP, Kumar M, Sridhar B, Kumar V, Haque R et al (2014) Benzofuran-Chalcone hybrids as potential multifunctional agents against Alzheimer’s disease: synthesis and in vivo studies with transgenic Caenorhabditis elegans. ChemMedChem. doi:10.1002/cmdc.201402291

    PubMed  Google Scholar 

  18. Sashidhara KV, Modukuri RK, Jadiya P, Rao KB, Sharma T, Haque R, Singh DK, Banerjee D et al (2014) Discovery of 3-arylcoumarin-tetracyclic tacrine hybrids as multifunctional agents against Parkinson’s disease. ACS Med Chem Lett 5(10):1099–1103. doi:10.1021/ml500222g

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kaur S, Sammi SR, Jadiya P, Nazir A (2012) RNAi of cat-2, a putative tyrosine hydroxylase, increases alpha synuclein aggregation and associated effects in transgenic C. elegans. CNS Neurol disord Drug Targets 11(4):387–394

    Article  CAS  PubMed  Google Scholar 

  20. Chiang WC, Tishkoff DX, Yang B, Wilson-Grady J, Yu X, Mazer T, Eckersdorff M, Gygi SP et al (2012) C. elegans SIRT6/7 homolog SIR-2.4 promotes DAF-16 relocalization and function during stress. PLoS Genet 8(9):e1002948. doi:10.1371/journal.pgen.100294821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nottke AC, Beese-Sims SE, Pantalena LF, Reinke V, Shi Y, Colaiacovo MP (2011) SPR-5 is a histone H3K4 demethylase with a role in meiotic double-strand break repair. Proc Natl Acad Sci U S A 108(31):12805–12810. doi:10.1073/pnas.1102298108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Eimer S, Lakowski B, Donhauser R, Baumeister R (2002) Loss of spr-5 bypasses the requirement for the C. elegans presenilin sel-12 by derepressing hop-1. EMBO J 21(21):5787–5796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Katz DJ, Edwards TM, Reinke V, Kelly WG (2009) A C. elegans LSD1 demethylase contributes to germline immortality by reprogramming epigenetic memory. Cell 137(2):308–320. doi:10.1016/j.cell.2009.02.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rudolph T, Yonezawa M, Lein S, Heidrich K, Kubicek S, Schafer C, Phalke S, Walther M et al (2007) Heterochromatin formation in Drosophila is initiated through active removal of H3K4 methylation by the LSD1 homolog SU(VAR)3-3. Mol Cell 26(1):103–115. doi:10.1016/j.molcel.2007.02.025

    Article  CAS  PubMed  Google Scholar 

  25. Bany IA, Dong MQ, Koelle MR (2003) Genetic and cellular basis for acetylcholine inhibition of Caenorhabditis elegans egg-laying behavior. J Neurosci Off J Soc Neurosci 23(22):8060–8069

    CAS  Google Scholar 

  26. Kim J, Poole DS, Waggoner LE, Kempf A, Ramirez DS, Treschow PA, Schafer WR (2001) Genes affecting the activity of nicotinic receptors involved in Caenorhabditis elegans egg-laying behavior. Genetics 157(4):1599–1610

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Greer EL, Brunet A (2009) Different dietary restriction regimens extend lifespan by both independent and overlapping genetic pathways in C. elegans. Aging Cell 8(2):113–127. doi:10.1111/j.1474-9726.2009.00459.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Han S, Brunet A (2012) Histone methylation makes its mark on longevity. Trends Cell Biol 22(1):42–49. doi:10.1016/j.tcb.2011.11.001

    Article  PubMed  Google Scholar 

  29. Gee P, Kent C (2003) Multiple isoforms of choline kinase from Caenorhabditis elegans: cloning, expression, purification, and characterization. Biochim Biophys Acta 1648(1–2):33–42

    Article  CAS  PubMed  Google Scholar 

  30. Exton JH (1994) Phosphatidylcholine breakdown and signal transduction. Biochim Biophys Acta 1212(1):26–42

    Article  CAS  PubMed  Google Scholar 

  31. Kent C, Carman GM (1999) Interactions among pathways for phosphatidylcholine metabolism, CTP synthesis and secretion through the Golgi apparatus. Trends Biochem Sci 24(4):146–150

    Article  CAS  PubMed  Google Scholar 

  32. Herman IM (1993) Actin isoforms. Curr Opin Cell Biol 5(1):48–55

    Article  CAS  PubMed  Google Scholar 

  33. Pollard TD, Cooper JA (1986) Actin and actin-binding proteins. A critical evaluation of mechanisms and functions. Annu Rev Biochem 55:987–1035. doi:10.1146/annurev.bi.55.070186.005011

    Article  CAS  PubMed  Google Scholar 

  34. Tilney LG, Connelly P, Smith S, Guild GM (1996) F-actin bundles in Drosophila bristles are assembled from modules composed of short filaments. J Cell Biol 135(5):1291–1308

    Article  CAS  PubMed  Google Scholar 

  35. Ben-Zvi A, Miller EA, Morimoto RI (2009) Collapse of proteostasis represents an early molecular event in Caenorhabditis elegans aging. Proc Natl Acad Sci U S A 106(35):14914–14919. doi:10.1073/pnas.0902882106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Reis-Rodrigues P, Czerwieniec G, Peters TW, Evani US, Alavez S, Gaman EA, Vantipalli M, Mooney SD et al (2012) Proteomic analysis of age-dependent changes in protein solubility identifies genes that modulate lifespan. Aging Cell 11(1):120–127. doi:10.1111/j.1474-9726.2011.00765.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

C. elegans strains were obtained from the Caenorhabditis Genetics Center (CGC) University of Minnesota, MN, USA, which is funded by the NIH National Center for Research Resources (NCRR). The confocal microscopy facility of CSIR-CDRI is acknowledged for making the facility available to us; Dr. Kavita Singh is gratefully acknowledged for her help with imaging. A. N. acknowledges the financial support received from CSIR-NWP “UNDO” (BSC0103). P. J. is thankful to CSIR for the Senior Research Fellowship (Ref: 113558/2 K11/1). CSIR-CDRI communication number is 9114.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aamir Nazir.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jadiya, P., Fatima, S., Baghel, T. et al. A Systematic RNAi Screen of Neuroprotective Genes Identifies Novel Modulators of Alpha-Synuclein-Associated Effects in Transgenic Caenorhabditis elegans . Mol Neurobiol 53, 6288–6300 (2016). https://doi.org/10.1007/s12035-015-9517-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9517-3

Keywords

Navigation