Skip to main content
Log in

Cellular Signature of SIL1 Depletion: Disease Pathogenesis due to Alterations in Protein Composition Beyond the ER Machinery

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

SIL1 acts as nucleotide exchange factor for the endoplasmic reticulum chaperone BiP. Mutations of SIL1 cause Marinesco-Sjögren syndrome (MSS), a neurodegenerative disorder. Moreover, a particular function of SIL1 for etiopathology of amyotrophic lateral sclerosis (ALS) was highlighted, thus declaring the functional SIL1-BiP complex as a modifier for neurodegenerative disorders. Thereby, depletion of SIL1 was associated with an earlier manifestation and in strengthened disease progression in ALS. Owing to the absence of appropriate in vitro models, the precise cellular pathophysiological mechanisms leading to neurodegeneration in MSS and triggering the same in further disorders like ALS are still elusive. We found that SIL1 depletion in human embryonic kidney 293 (HEK293) cells led to structural changes of the endoplasmic reticulum (ER) including the nuclear envelope and mitochondrial degeneration that closely mimic pathological alterations in MSS and ALS. Functional studies revealed disturbed protein transport, cytotoxicity with reduced proliferation and viability, accompanied by activation of cellular defense mechanisms including the unfolded protein response, ER-associated degradation pathway, proteolysis, and expression of apoptotic and survival factors. Our data moreover indicated that proteins involved in cytoskeletal organization, vesicular transport, mitochondrial function, and neurological processes contribute to SIL1 pathophysiology. Altered protein expression upon SIL1 depletion in vitro could be confirmed in Sil1-deficient motoneurones for paradigmatic proteins belonging to different functional classes. Our results demonstrate that SIL1-depleted HEK293 cells are an appropriate model to identify proteins modulated by SIL1 expression level and contributing to neurodegeneration in MSS and further disorders like ALS. Thereby, our combined results point out that proteins beyond such involved ER-related protein processing are affected by SIL1 depletion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Macario AJ, Conway de Macario E (2007) Chaperonopathies by defect, excess, or mistake. Ann N Y Acad Sci 1113:178–191. doi:10.1196/annals.1391.009

    Article  CAS  PubMed  Google Scholar 

  2. Doyle KM, Kennedy D, Gorman AM, Gupta S, Healy SJ, Samali A (2011) Unfolded proteins and endoplasmic reticulum stress in neurodegenerative disorders. J Cell Mol Med 15(10):2025–2039. doi:10.1111/j.1582-4934.2011.01374.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Dudek J, Benedix J, Cappel S, Greiner M, Jalal C, Muller L, Zimmermann R (2009) Functions and pathologies of BiP and its interaction partners. Cell Mol Life Sci 66(9):1556–1569. doi:10.1007/s00018-009-8745-y

    Article  CAS  PubMed  Google Scholar 

  4. Tyson JR, Stirling CJ (2000) LHS1 and SIL1 provide a lumenal function that is essential for protein translocation into the endoplasmic reticulum. EMBO J 19(23):6440–6452. doi:10.1093/emboj/19.23.6440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yan M, Li J, Sha B (2011) Structural analysis of the Sil1-Bip complex reveals the mechanism for Sil1 to function as a nucleotide-exchange factor. Biochem J 438(3):447–455. doi:10.1042/BJ20110500

    Article  CAS  PubMed  Google Scholar 

  6. Chung KT, Shen Y, Hendershot LM (2002) BAP, a mammalian BiP-associated protein, is a nucleotide exchange factor that regulates the ATPase activity of BiP. J Biol Chem 277(49):47557–47563. doi:10.1074/jbc.M208377200

    Article  CAS  PubMed  Google Scholar 

  7. Anttonen AK, Mahjneh I, Hamalainen RH, Lagier-Tourenne C, Kopra O, Waris L, Anttonen M, Joensuu T et al (2005) The gene disrupted in Marinesco-Sjogren syndrome encodes SIL1, an HSPA5 cochaperone. Nat Genet 37(12):1309–1311. doi:10.1038/ng1677

    Article  CAS  PubMed  Google Scholar 

  8. Senderek J, Krieger M, Stendel C, Bergmann C, Moser M, Breitbach-Faller N, Rudnik-Schoneborn S, Blaschek A et al (2005) Mutations in SIL1 cause Marinesco-Sjogren syndrome, a cerebellar ataxia with cataract and myopathy. Nat Genet 37(12):1312–1314. doi:10.1038/ng1678

    Article  CAS  PubMed  Google Scholar 

  9. Krieger M, Roos A, Stendel C, Claeys KG, Sonmez FM, Baudis M, Bauer P, Bornemann A et al (2013) SIL1 mutations and clinical spectrum in patients with Marinesco-Sjogren syndrome. Brain 136(Pt 12):3634–3644. doi:10.1093/brain/awt283

    Article  PubMed  Google Scholar 

  10. Zhao L, Longo-Guess C, Harris BS, Lee JW, Ackerman SL (2005) Protein accumulation and neurodegeneration in the woozy mutant mouse is caused by disruption of SIL1, a cochaperone of BiP. Nat Genet 37(9):974–979. doi:10.1038/ng1620

    Article  CAS  PubMed  Google Scholar 

  11. Zhao L, Rosales C, Seburn K, Ron D, Ackerman SL (2010) Alteration of the unfolded protein response modifies neurodegeneration in a mouse model of Marinesco-Sjogren syndrome. Hum Mol Genet 19(1):25–35. doi:10.1093/hmg/ddp464

    Article  CAS  PubMed  Google Scholar 

  12. Roos A, Buchkremer S, Kollipara L, Labisch T, Gatz C, Zitzelsberger M, Brauers E, Nolte K et al (2014) Myopathy in Marinesco-Sjogren syndrome links endoplasmic reticulum chaperone dysfunction to nuclear envelope pathology. Acta Neuropathol 127(5):761–777. doi:10.1007/s00401-013-1224-4

    Article  CAS  PubMed  Google Scholar 

  13. Filezac de L'Etang A, Maharjan N, Cordeiro Brana M, Ruegsegger C, Rehmann R, Goswami A, Roos A, Troost D et al (2015) Marinesco-Sjogren syndrome protein SIL1 regulates motor neuron subtype-selective ER stress in ALS. Nat Neurosci 18(2):227–238. doi:10.1038/nn.3903

    Article  PubMed  Google Scholar 

  14. Anttonen AK, Siintola E, Tranebjaerg L, Iwata NK, Bijlsma EK, Meguro H, Ichikawa Y, Goto J et al (2008) Novel SIL1 mutations and exclusion of functional candidate genes in Marinesco-Sjogren syndrome. Eur J Hum Genet 16(8):961–969. doi:10.1038/ejhg.2008.22

    Article  CAS  PubMed  Google Scholar 

  15. Howes J, Shimizu Y, Feige MJ, Hendershot LM (2012) C-terminal mutations destabilize SIL1/BAP and can cause Marinesco-Sjogren syndrome. J Biol Chem 287(11):8552–8560. doi:10.1074/jbc.M111.333286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kuijpers M, van Dis V, Haasdijk ED, Harterink M, Vocking K, Post JA, Scheper W, Hoogenraad CC et al (2013) Amyotrophic lateral sclerosis (ALS)-associated VAPB-P56S inclusions represent an ER quality control compartment. Acta Neuropathol Commun 1(1):24. doi:10.1186/2051-5960-1-24

    Article  PubMed  PubMed Central  Google Scholar 

  17. Tadic V, Prell T, Lautenschlaeger J, Grosskreutz J (2014) The ER mitochondria calcium cycle and ER stress response as therapeutic targets in amyotrophic lateral sclerosis. Front Cell Neurosci 8:147. doi:10.3389/fncel.2014.00147

    Article  PubMed  PubMed Central  Google Scholar 

  18. Dupuis L, Gonzalez de Aguilar JL, Oudart H, de Tapia M, Barbeito L, Loeffler JP (2004) Mitochondria in amyotrophic lateral sclerosis: a trigger and a target. Neurodegener Dis 1(6):245–254. doi:10.1159/000085063

    Article  PubMed  Google Scholar 

  19. Tran D, Chalhoub A, Schooley A, Zhang W, Ngsee JK (2012) A mutation in VAPB that causes amyotrophic lateral sclerosis also causes a nuclear envelope defect. J Cell Sci 125(Pt 12):2831–2836. doi:10.1242/jcs.102111

    Article  CAS  PubMed  Google Scholar 

  20. Burkhart JM, Gambaryan S, Watson SP, Jurk K, Walter U, Sickmann A, Heemskerk JW, Zahedi RP (2014) What can proteomics tell us about platelets? Circ Res 114(7):1204–1219. doi:10.1161/CIRCRESAHA.114.301598

    Article  CAS  PubMed  Google Scholar 

  21. Franceschini A, Szklarczyk D, Frankild S, Kuhn M, Simonovic M, Roth A, Lin J, Minguez P et al (2013) STRING v9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res 41(Database issue):D808–D815. doi:10.1093/nar/gks1094

    Article  CAS  PubMed  Google Scholar 

  22. Cavallucci V, Nobili A, D'Amelio M (2013) Emerging role of mitochondria dysfunction in the onset of neurodegenerative diseases. J Biol Regul Homeost Agents 27(2 Suppl):1–9

    CAS  PubMed  Google Scholar 

  23. Brunden KR, Trojanowski JQ, Smith AB 3rd, Lee VM, Ballatore C (2013) Microtubule-stabilizing agents as potential therapeutics for neurodegenerative disease. Bioorg Med Chem. doi:10.1016/j.bmc.2013.12.046

    PubMed  PubMed Central  Google Scholar 

  24. Bronfman FC, Escudero CA, Weis J, Kruttgen A (2007) Endosomal transport of neurotrophins: roles in signaling and neurodegenerative diseases. Dev Neurobiol 67(9):1183–1203. doi:10.1002/dneu.20513

    Article  CAS  PubMed  Google Scholar 

  25. Urra H, Hetz C (2012) The ER in 4D: a novel stress pathway controlling endoplasmic reticulum membrane remodeling. Cell Death Differ 19(12):1893–1895. doi:10.1038/cdd.2012.127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Marcinowski M, Holler M, Feige MJ, Baerend D, Lamb DC, Buchner J (2011) Substrate discrimination of the chaperone BiP by autonomous and cochaperone-regulated conformational transitions. Nat Struct Mol Biol 18(2):150–158. doi:10.1038/nsmb.1970

    Article  CAS  PubMed  Google Scholar 

  27. Gallien S, Duriez E, Crone C, Kellmann M, Moehring T, Domon B (2012) Targeted proteomic quantification on quadrupole-orbitrap mass spectrometer. Mol Cell Proteomics 11(12):1709–1723. doi:10.1074/mcp.O112.019802

    Article  PubMed  PubMed Central  Google Scholar 

  28. Butler EK, Voigt A, Lutz AK, Toegel JP, Gerhardt E, Karsten P, Falkenburger B, Reinartz A et al (2012) The mitochondrial chaperone protein TRAP1 mitigates alpha-Synuclein toxicity. PLoS Genet 8(2):e1002488. doi:10.1371/journal.pgen.1002488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jiang YL, Ning Y, Ma XL, Liu YY, Wang Y, Zhang Z, Shan CX, Xu YD et al (2011) Alteration of the proteome profile of the pancreas in diabetic rats induced by streptozotocin. Int J Mol Med 28(2):153–160. doi:10.3892/ijmm.2011.696

    CAS  PubMed  Google Scholar 

  30. Wang M, Ye R, Barron E, Baumeister P, Mao C, Luo S, Fu Y, Luo B et al (2010) Essential role of the unfolded protein response regulator GRP78/BiP in protection from neuronal apoptosis. Cell Death Differ 17(3):488–498. doi:10.1038/cdd.2009.144

    Article  CAS  PubMed  Google Scholar 

  31. Penas C, Font-Nieves M, Fores J, Petegnief V, Planas A, Navarro X, Casas C (2011) Autophagy, and BiP level decrease are early key events in retrograde degeneration of motoneurons. Cell Death Differ 18(10):1617–1627. doi:10.1038/cdd.2011.24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jarosch E, Geiss-Friedlander R, Meusser B, Walter J, Sommer T (2002) Protein dislocation from the endoplasmic reticulum--pulling out the suspect. Traffic 3(8):530–536

    Article  CAS  PubMed  Google Scholar 

  33. Nishikawa S, Brodsky JL, Nakatsukasa K (2005) Roles of molecular chaperones in endoplasmic reticulum (ER) quality control and ER-associated degradation (ERAD). J Biochem 137(5):551–555. doi:10.1093/jb/mvi068

    Article  CAS  PubMed  Google Scholar 

  34. Chen L, Madura K (2002) Rad23 promotes the targeting of proteolytic substrates to the proteasome. Mol Cell Biol 22(13):4902–4913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kanekura K, Suzuki H, Aiso S, Matsuoka M (2009) ER stress and unfolded protein response in amyotrophic lateral sclerosis. Mol Neurobiol 39(2):81–89. doi:10.1007/s12035-009-8054-3

    Article  CAS  PubMed  Google Scholar 

  36. Ayaki T, Ito H, Fukushima H, Inoue T, Kondo T, Ikemoto A, Asano T, Shodai A et al (2014) Immunoreactivity of valosin-containing protein in sporadic amyotrophic lateral sclerosis and in a case of its novel mutant. Acta Neuropathol Commun 2(1):172. doi:10.1186/s40478-014-0172-0

    Article  PubMed  PubMed Central  Google Scholar 

  37. Johnson JO, Mandrioli J, Benatar M, Abramzon Y, Van Deerlin VM, Trojanowski JQ, Gibbs JR, Brunetti M et al (2010) Exome sequencing reveals VCP mutations as a cause of familial ALS. Neuron 68(5):857–864. doi:10.1016/j.neuron.2010.11.036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Synofzik M, Haack TB, Kopajtich R, Gorza M, Rapaport D, Greiner M, Schonfeld C, Freiberg C et al (2014) Absence of BiP co-chaperone DNAJC3 causes diabetes mellitus and multisystemic neurodegeneration. Am J Hum Genet 95(6):689–697. doi:10.1016/j.ajhg.2014.10.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Papassotiropoulos A, Bagli M, Kurz A, Kornhuber J, Forstl H, Maier W, Pauls J, Lautenschlager N et al (2000) A genetic variation of cathepsin D is a major risk factor for Alzheimer's disease. Ann Neurol 47(3):399–403

    Article  CAS  PubMed  Google Scholar 

  40. Kikuchi H, Yamada T, Furuya H, Doh-ura K, Ohyagi Y, Iwaki T, Kira J (2003) Involvement of cathepsin B in the motor neuron degeneration of amyotrophic lateral sclerosis. Acta Neuropathol 105(5):462–468. doi:10.1007/s00401-002-0667-9

    CAS  PubMed  Google Scholar 

  41. Yorimitsu T, Nair U, Yang Z, Klionsky DJ (2006) Endoplasmic reticulum stress triggers autophagy. J Biol Chem 281(40):30299–30304. doi:10.1074/jbc.M607007200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hoyer-Hansen M, Jaattela M (2007) Connecting endoplasmic reticulum stress to autophagy by unfolded protein response and calcium. Cell Death Differ 14(9):1576–1582. doi:10.1038/sj.cdd.4402200

    Article  CAS  PubMed  Google Scholar 

  43. Barmada SJ, Serio A, Arjun A, Bilican B, Daub A, Ando DM, Tsvetkov A, Pleiss M et al (2014) Autophagy induction enhances TDP43 turnover and survival in neuronal ALS models. Nat Chem Biol 10(8):677–685. doi:10.1038/nchembio.1563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Prause J, Goswami A, Katona I, Roos A, Schnizler M, Bushuven E, Dreier A, Buchkremer S et al (2013) Altered localization, abnormal modification and loss of function of sigma receptor-1 in amyotrophic lateral sclerosis. Hum Mol Genet 22:1581–1600

    Article  CAS  PubMed  Google Scholar 

  45. Villa A, Podini P, Nori A, Panzeri MC, Martini A, Meldolesi J, Volpe P (1993) The endoplasmic reticulum-sarcoplasmic reticulum connection. II. Postnatal differentiation of the sarcoplasmic reticulum in skeletal muscle fibers. Exp Cell Res 209(1):140–148

    Article  CAS  PubMed  Google Scholar 

  46. Nakamura A, Osonoi T, Terauchi Y (2010) Relationship between urinary sodium excretion and pioglitazone-induced edema. J Diab Investig 1(5):208–211. doi:10.1111/j.2040-1124.2010.00046.x

    Article  CAS  Google Scholar 

  47. Inaguma Y, Hamada N, Tabata H, Iwamoto I, Mizuno M, Nishimura YV, Ito H, Morishita R et al (2014) SIL1, a causative cochaperone gene of marinesco-sojgren syndrome, plays an essential role in establishing the architecture of the developing cerebral cortex. EMBO Mol Med 6(3):414–429. doi:10.1002/emmm.201303069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yu FX, Sun HQ, Janmey PA, Yin HL (1992) Identification of a polyphosphoinositide-binding sequence in an actin monomer-binding domain of gelsolin. J Biol Chem 267(21):14616–14621

    CAS  PubMed  Google Scholar 

  49. Bajo M, Yoo BC, Cairns N, Gratzer M, Lubec G (2001) Neurofilament proteins NF-L, NF-M and NF-H in brain of patients with down syndrome and Alzheimer's disease. Amino Acids 21(3):293–301

    Article  CAS  PubMed  Google Scholar 

  50. Hoffman PN, Cleveland DW, Griffin JW, Landes PW, Cowan NJ, Price DL (1987) Neurofilament gene expression: a major determinant of axonal caliber. Proc Natl Acad Sci U S A 84(10):3472–3476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ganay T, Boizot A, Burrer R, Chauvin JP, Bomont P (2011) Sensory-motor deficits and neurofilament disorganization in gigaxonin-null mice. Mol Neurodegener 6:25. doi:10.1186/1750-1326-6-25

    Article  PubMed  PubMed Central  Google Scholar 

  52. Maximino JR, de Oliveira GP, Alves CJ, Chadi G (2014) Deregulated expression of cytoskeleton related genes in the spinal cord and sciatic nerve of presymptomatic SOD1 (G93A) amyotrophic lateral sclerosis mouse model. Front Cell Neurosci 8:148. doi:10.3389/fncel.2014.00148

    Article  PubMed  PubMed Central  Google Scholar 

  53. Gal J, Chen J, Barnett KR, Yang L, Brumley E, Zhu H (2013) HDAC6 regulates mutant SOD1 aggregation through two SMIR motifs and tubulin acetylation. J Biol Chem 288(21):15035–15045. doi:10.1074/jbc.M112.431957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Taes I, Timmers M, Hersmus N, Bento-Abreu A, Van Den Bosch L, Van Damme P, Auwerx J, Robberecht W (2013) Hdac6 deletion delays disease progression in the SOD1G93A mouse model of ALS. Hum Mol Genet 22(9):1783–1790. doi:10.1093/hmg/ddt028

    Article  CAS  PubMed  Google Scholar 

  55. Zhang Y, Li N, Caron C, Matthias G, Hess D, Khochbin S, Matthias P (2003) HDAC-6 interacts with and deacetylates tubulin and microtubules in vivo. EMBO J 22(5):1168–1179. doi:10.1093/emboj/cdg115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ackermann B, Krober S, Torres-Benito L, Borgmann A, Peters M, Hosseini Barkooie SM, Tejero R, Jakubik M et al (2013) Plastin 3 ameliorates spinal muscular atrophy via delayed axon pruning and improves neuromuscular junction functionality. Hum Mol Genet 22(7):1328–1347. doi:10.1093/hmg/dds540

    Article  CAS  PubMed  Google Scholar 

  57. Yoshii Y, Otomo A, Pan L, Ohtsuka M, Hadano S (2011) Loss of glial fibrillary acidic protein marginally accelerates disease progression in a SOD1 (H46R) transgenic mouse model of ALS. Neurosci Res 70(3):321–329. doi:10.1016/j.neures.2011.03.006

    Article  CAS  PubMed  Google Scholar 

  58. Bucci C, Alifano P, Cogli L (2014) The role of rab proteins in neuronal cells and in the trafficking of neurotrophin receptors. Membranes 4(4):642–677. doi:10.3390/membranes4040642

    Article  PubMed  PubMed Central  Google Scholar 

  59. la Cour JM, Schindler AJ, Berchtold MW, Schekman R (2013) ALG-2 attenuates COPII budding in vitro and stabilizes the Sec23/Sec31A complex. PLoS One 8(9):e75309. doi:10.1371/journal.pone.0075309

    Article  PubMed  PubMed Central  Google Scholar 

  60. van Dis V, Kuijpers M, Haasdijk ED, Teuling E, Oakes SA, Hoogenraad CC, Jaarsma D (2014) Golgi fragmentation precedes neuromuscular denervation and is associated with endosome abnormalities in SOD1-ALS mouse motor neurons. Acta Neuropathol Commun 2:38. doi:10.1186/2051-5960-2-38

    Article  PubMed  PubMed Central  Google Scholar 

  61. Peng C, Ye J, Yan S, Kong S, Shen Y, Li C, Li Q, Zheng Y et al (2012) Ablation of vacuole protein sorting 18 (Vps18) gene leads to neurodegeneration and impaired neuronal migration by disrupting multiple vesicle transport pathways to lysosomes. J Biol Chem 287(39):32861–32873. doi:10.1074/jbc.M112.384305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Marchi S, Patergnani S, Pinton P (2014) The endoplasmic reticulum-mitochondria connection: one touch, multiple functions. Biochim Biophys Acta 1837(4):461–469. doi:10.1016/j.bbabio.2013.10.015

    Article  CAS  PubMed  Google Scholar 

  63. Korobova F, Ramabhadran V, Higgs HN (2013) An actin-dependent step in mitochondrial fission mediated by the ER-associated formin INF2. Science 339(6118):464–467. doi:10.1126/science.1228360

    Article  CAS  PubMed  Google Scholar 

  64. Liu H, Li Y, Li Y, Liu B, Wu H, Wang J, Wang Y, Wang M et al (2012) Cloning and functional analysis of FLJ20420: a novel transcription factor for the BAG-1 promoter. PLoS One 7(5):e34832. doi:10.1371/journal.pone.0034832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Palomo GM, Manfredi G (2014) Exploring new pathways of neurodegeneration in ALS: the role of mitochondria quality control. Brain Res. doi:10.1016/j.brainres.2014.09.065

    PubMed  PubMed Central  Google Scholar 

  66. Zetterstrom P, Graffmo KS, Andersen PM, Brannstrom T, Marklund SL (2011) Proteins that bind to misfolded mutant superoxide dismutase-1 in spinal cords from transgenic amyotrophic lateral sclerosis (ALS) model mice. J Biol Chem 286(23):20130–20136. doi:10.1074/jbc.M111.218842

    Article  PubMed  PubMed Central  Google Scholar 

  67. Crippa V, Carra S, Rusmini P, Sau D, Bolzoni E, Bendotti C, De Biasi S, Poletti A (2010) A role of small heat shock protein B8 (HspB8) in the autophagic removal of misfolded proteins responsible for neurodegenerative diseases. Autophagy 6(7):958–960. doi:10.4161/auto.6.7.13042

    Article  PubMed  Google Scholar 

  68. Schwenk J, Metz M, Zolles G, Turecek R, Fritzius T, Bildl W, Tarusawa E, Kulik A et al (2010) Native GABA(B) receptors are heteromultimers with a family of auxiliary subunits. Nature 465(7295):231–235. doi:10.1038/nature08964

    Article  CAS  PubMed  Google Scholar 

  69. Abu El-Asrar AM, Mohammad G, De Hertogh G, Nawaz MI, Van Den Eynde K, Siddiquei MM, Struyf S, Opdenakker G et al (2013) Neurotrophins and neurotrophin receptors in proliferative diabetic retinopathy. PLoS One 8(6):e65472. doi:10.1371/journal.pone.0065472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Fath I, Schweighoffer F, Rey I, Multon MC, Boiziau J, Duchesne M, Tocque B (1994) Cloning of a Grb2 isoform with apoptotic properties. Science 264(5161):971–974

    Article  CAS  PubMed  Google Scholar 

  71. Vecino E, Caminos E, Becker E, Rudkin BB, Evan GI, Martin-Zanca D (1998) Increased levels of TrkA in the regenerating retinal ganglion cells of fish. Neuroreport 9(15):3409–3413

    Article  CAS  PubMed  Google Scholar 

  72. Nishio T, Sunohara N, Furukawa S (1998) Neutrophin switching in spinal motoneurons of amyotrophic lateral sclerosis. Neuroreport 9(7):1661–1665

    Article  CAS  PubMed  Google Scholar 

  73. Mattson MP, Camandola S (2001) NF-kappaB in neuronal plasticity and neurodegenerative disorders. J Clin Invest 107(3):247–254. doi:10.1172/JCI11916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kaufman RJ (2002) Orchestrating the unfolded protein response in health and disease. J Clin Invest 110(10):1389–1398. doi:10.1172/JCI16886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Zhou L, Wang H, Ren H, Hu Q, Ying Z, Wang G (2014) Bcl-2 decreases the affinity of SQSTM1/p62 to poly-ubiquitin chains and suppresses the aggregation of misfolded protein in neurodegenerative disease. Mol Neurobiol. doi:10.1007/s12035-014-8908-1

    PubMed Central  Google Scholar 

  76. Liu ZC, Chu J, Lin L, Song J, Ning LN, Luo HB, Yang SS, Shi Y et al (2015) SIL1 rescued Bip elevation-related Tau hyperphosphorylation in ER stress. Mol Neurobiol. doi:10.1007/s12035-014-9039-4

    Google Scholar 

  77. Gallant NM, Baldwin E, Salamon N, Dipple KM, Quintero-Rivera F (2011) Pontocerebellar hypoplasia in association with de novo 19p13.11p13.12 microdeletion. Am J Med Genet A 155A(11):2871–2878. doi:10.1002/ajmg.a.34286

    Article  PubMed  Google Scholar 

  78. Rath O, Park S, Tang HH, Banfield MJ, Brady RL, Lee YC, Dignam JD, Sedivy JM et al (2008) The RKIP (Raf-1 kinase inhibitor protein) conserved pocket binds to the phosphorylated N-region of Raf-1 and inhibits the Raf-1-mediated activated phosphorylation of MEK. Cell Signal 20(5):935–941. doi:10.1016/j.cellsig.2008.01.012

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Hannelore Mader, Astrid Knischewski, and Claudia Krude for expert technical assistance. This work was supported by a grant from the START program of RWTH Aachen University (to A. R.; Grant No. 41/12), by the Else Kröner-Fresenius Stiftung (to A. R.; Grant No. A59/09), by the Interdisziplinäres Zentrum für Klinische Forschung (IZKF) Aachen (N7-4, to J.W.), by the Ministerium für Innovation, Wissenschaft und Forschung des Landes Nordrhein-Westfalen, and by the German Research Foundation (DFG; ZA 639/1-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Roos.

Additional information

Laxmikanth Kollipara and Stephan Buchkremer contributed equally to this work.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Online Resource 1

(XLSX 1082 kb)

Online Resource 2

(DOC 136 kb)

Online Resource 3

(PDF 56 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roos, A., Kollipara, L., Buchkremer, S. et al. Cellular Signature of SIL1 Depletion: Disease Pathogenesis due to Alterations in Protein Composition Beyond the ER Machinery. Mol Neurobiol 53, 5527–5541 (2016). https://doi.org/10.1007/s12035-015-9456-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9456-z

Keywords

Navigation