Skip to main content
Log in

Role of Mitochondrial Calcium Uniporter in Early Brain Injury After Experimental Subarachnoid Hemorrhage

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Previous studies have shown that mitochondrial Ca2+ is undertaken by mitochondrial calcium uniporter (MCU), and its accumulation is associated with the development of many diseases. However, little was known about the role of MCU in early brain injury (EBI) after subarachnoid hemorrhage (SAH). MCU can be opened by spermine under a physiological condition and inhibited by ruthenium red (RR). Herein, we investigated the effects of RR and spermine to reveal the role of MCU in SAH animal model. The data obtained with biochemical and histological assays showed that mitochondrial Ca2+ concentration was significantly increased in the temporal cortex of rats 1, 2, and 3 days after SAH, consistent with constant high levels of cellular Ca2+ concentration. In agreement with the observation in the acute phase, SAH rats showed an obvious increase of reactive oxygen species (ROS) level and decrease of ATP production. Blockage of MCU prevented Ca2+ accumulation, abated the level of oxidative stress, and improved the energy supply. Translocation of cytochrome c, increased cleaved caspase-3, and a large amount of apoptotic cells after SAH were reversed by RR administration. Surprisingly, exogenous spermine did not increase cellular Ca2+ concentration, but lessened the Ca2+ accumulation after SAH to benefit the rats. Taken together, our results demonstrated that blockage of MCU or prevention of Ca2+ accumulation after SAH is essential in EBI after SAH. These findings suggest that MCU is considered to be a therapeutic target for patients suffering from SAH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Green DM, Burns JD, DeFusco CM (2013) ICU management of aneurysmal subarachnoid hemorrhage. J Intensive Care Med 28:341–354

    Article  PubMed  Google Scholar 

  2. American Heart Association Stroke C, Council on Cardiovascular R, Intervention, Council on Cardiovascular N, Council on Cardiovascular S, Anesthesia, Council on Clinical C, Connolly ES Jr, Rabinstein AA, Carhuapoma JR, Derdeyn CP, Dion J, Higashida RT, Hoh BL, Kirkness CJ, Naidech AM, Ogilvy CS, Patel AB, Thompson BG, Vespa P (2012) Guidelines for the management of aneurysmal subarachnoid hemorrhage: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 43:1711–1737

    Article  Google Scholar 

  3. Topkoru BC, Altay O, Duris K, Krafft PR, Yan J, Zhang JH (2013) Nasal administration of recombinant osteopontin attenuates early brain injury after subarachnoid hemorrhage. Stroke 44:3189–3194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Macdonald RL, Higashida RT, Keller E, Mayer SA, Molyneux A, Raabe A, Vajkoczy P, Wanke I, Bach D, Frey A, Marr A, Roux S, Kassell N (2011) Clazosentan, an endothelin receptor antagonist, in patients with aneurysmal subarachnoid haemorrhage undergoing surgical clipping: a randomised, double-blind, placebo-controlled phase 3 trial (CONSCIOUS-2). Lancet Neurol 10:618–625

    Article  CAS  PubMed  Google Scholar 

  5. Vergouwen MD, Ilodigwe D, Macdonald RL (2011) Cerebral infarction after subarachnoid hemorrhage contributes to poor outcome by vasospasm-dependent and -independent effects. Stroke 42:924–929

    Article  PubMed  Google Scholar 

  6. Cahill J, Zhang JH (2009) Subarachnoid hemorrhage: is it time for a new direction? Stroke 40:S86–S87

    Article  PubMed  Google Scholar 

  7. Sehba FA, Hou J, Pluta RM, Zhang JH (2012) The importance of early brain injury after subarachnoid hemorrhage. Prog Neurobiol 97:14–37

    Article  PubMed  PubMed Central  Google Scholar 

  8. Nicchitta CV, Williamson JR (1984) Spermine. A regulator of mitochondrial calcium cycling. J Biol Chem 259:12978–12983

    CAS  PubMed  Google Scholar 

  9. Kirichok Y, Krapivinsky G, Clapham DE (2004) The mitochondrial calcium uniporter is a highly selective ion channel. Nature 427:360–364

    Article  CAS  PubMed  Google Scholar 

  10. McCormack JG, Halestrap AP, Denton RM (1990) Role of calcium ions in regulation of mammalian intramitochondrial metabolism. Physiol Rev 70:391–425

    CAS  PubMed  Google Scholar 

  11. Peng TI, Jou MJ (2010) Oxidative stress caused by mitochondrial calcium overload. Ann N Y Acad Sci 1201:183–188

    Article  CAS  PubMed  Google Scholar 

  12. Di Lisa F, Bernardi P (2009) A CaPful of mechanisms regulating the mitochondrial permeability transition. J Mol Cell Cardiol 46:775–780

    Article  PubMed  Google Scholar 

  13. Owens K, Park JH, Schuh R, Kristian T (2013) Mitochondrial dysfunction and NAD(+) metabolism alterations in the pathophysiology of acute brain injury. Transl Stroke Res 4:618–634

    Article  CAS  PubMed  Google Scholar 

  14. O’Rourke B (2000) Pathophysiological and protective roles of mitochondrial ion channels. J Physiol 529:23–36

    Article  PubMed  PubMed Central  Google Scholar 

  15. Orrenius S, Zhivotovsky B, Nicotera P (2003) Regulation of cell death: the calcium-apoptosis link. Nat Rev Mol Cell Biol 4:552–565

    Article  CAS  PubMed  Google Scholar 

  16. Zhao QW, Li S, Wang Y, Li P, Guo S, Yao YR (2013) The role of the mitochondrial calcium uniporter in cerebral ischemia/reperfusion injury in rats involves regulation of mitochondrial energy metabolism. Mol Med Rep 7:1073–1080

    CAS  PubMed  Google Scholar 

  17. American Heart Association Stroke C, Council on Cardiovascular R, Intervention, Council on Cardiovascular N, Council on Cardiovascular S, Anesthesia, Council on Clinical C, Connolly ES Jr, Rabinstein AA, Carhuapoma JR, Derdeyn CP, Dion J, Higashida RT, Hoh BL, Kirkness CJ, Naidech AM, Ogilvy CS, Patel AB, Thompson BG, Vespa P (2012) Guidelines for the management of aneurysmal subarachnoid hemorrhage: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 43:1711–1737

    Article  Google Scholar 

  18. Liang N, Wang P, Wang S, Li S, Li Y, Wang J, Wang M (2014) Role of mitochondrial calcium uniporter in regulating mitochondrial fission in the cerebral cortexes of living rats. J Neural Transm 121:593–600

    Article  CAS  PubMed  Google Scholar 

  19. Prunell GF, Mathiesen T, Svendgaard NA (2002) A new experimental model in rats for study of the pathophysiology of subarachnoid hemorrhage. Neuroreport 13:2553–2556

    Article  PubMed  Google Scholar 

  20. Sun Q, Dai Y, Zhang X, Hu YC, Zhang D, Li W, Zhang XS, Zhu JH, Zhou ML, Hang CH (2013) Expression and cell distribution of myeloid differentiation primary response protein 88 in the cerebral cortex following experimental subarachnoid hemorrhage in rats: a pilot study. Brain Res 1520:134–144

    Article  CAS  PubMed  Google Scholar 

  21. Dai Y, Sun Q, Zhang X, Hu Y, Zhou M, Shi J (2014) Cyclosporin A ameliorates early brain injury after subarachnoid hemorrhage through inhibition of a Nur77 dependent apoptosis pathway. Brain Res 1556:67–76

    Article  CAS  PubMed  Google Scholar 

  22. Yamaguchi M, Zhou C, Nanda A, Zhang JH (2004) Ras protein contributes to cerebral vasospasm in a canine double-hemorrhage model. Stroke 35:1750–1755

    Article  CAS  PubMed  Google Scholar 

  23. Zhuang Z, Zhou ML, You WC, Zhu L, Ma CY, Sun XJ, Shi JX (2012) Hydrogen-rich saline alleviates early brain injury via reducing oxidative stress and brain edema following experimental subarachnoid hemorrhage in rabbits. BMC Neurosci 13:47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cosentino K, Garcia-Saez AJ (2014) Mitochondrial alterations in apoptosis. Chem Phys Lipids 181:62–75

    Article  CAS  PubMed  Google Scholar 

  25. Ricci JE, Gottlieb RA, Green DR (2003) Caspase-mediated loss of mitochondrial function and generation of reactive oxygen species during apoptosis. J Cell Biol 160:65–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gaetani P, Pasqualin A, Rodriguez y Baena R, Borasio E, Marzatico F (1998) Oxidative stress in the human brain after subarachnoid hemorrhage. J Neurosurg 89:748–754

    Article  CAS  PubMed  Google Scholar 

  27. Nina P, Schisano G, Chiappetta F, Luisa Papa M, Maddaloni E, Brunori A, Capasso F, Corpetti MG, Demurtas F (2001) A study of blood coagulation and fibrinolytic system in spontaneous subarachnoid hemorrhage. Correlation with hunt-hess grade and outcome. Surg Neurol 55:197–203

    Article  CAS  PubMed  Google Scholar 

  28. Mehta A, Prabhakar M, Kumar P, Deshmukh R, Sharma PL (2013) Excitotoxicity: bridge to various triggers in neurodegenerative disorders. Eur J Pharmacol 698:6–18

    Article  CAS  PubMed  Google Scholar 

  29. Patron M, Raffaello A, Granatiero V, Tosatto A, Merli G, De Stefani D, Wright L, Pallafacchina G, Terrin A, Mammucari C, Rizzuto R (2013) The mitochondrial calcium uniporter (MCU): molecular identity and physiological roles. J Biol Chem 288:10750–10758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ostrowski RP, Colohan AR, Zhang JH (2006) Molecular mechanisms of early brain injury after subarachnoid hemorrhage. Neurol Res 28:399–414

    Article  CAS  PubMed  Google Scholar 

  31. Zhang SZ, Gao Q, Cao CM, Bruce IC, Xia Q (2006) Involvement of the mitochondrial calcium uniporter in cardioprotection by ischemic preconditioning. Life Sci 78:738–745

    Article  CAS  PubMed  Google Scholar 

  32. Yang X, Wang B, Zeng H, Cai C, Hu Q, Cai S, Xu L, Meng X, Zou F (2014) Role of the mitochondrial Ca uniporter in Pb-induced oxidative stress in human neuroblastoma cells. Brain Res 1575:12–21. doi:10.1016/j.brainres.2014.05.032

  33. Kalac P (2014) Health effects and occurrence of dietary polyamines: a review for the period 2005–mid 2013. Food Chem 161:27–39

    Article  CAS  PubMed  Google Scholar 

  34. Mozdzan M, Szemraj J, Rysz J, Stolarek RA, Nowak D (2006) Anti-oxidant activity of spermine and spermidine re-evaluated with oxidizing systems involving iron and copper ions. Int J Biochem Cell Biol 38:69–81

    Article  CAS  PubMed  Google Scholar 

  35. Premkumar K, Bowlus CL (2004) Ascorbic acid does not increase the oxidative stress induced by dietary iron in C3H mice. J Nutr 134:435–438

    CAS  PubMed  Google Scholar 

  36. Salvi M, Toninello A (2004) Effects of polyamines on mitochondrial Ca(2+) transport. Biochim Biophys Acta 1661:113–124

    Article  CAS  PubMed  Google Scholar 

  37. Hubschmann OR, Nathanson DC (1985) The role of calcium and cellular membrane dysfunction in experimental trauma and subarachnoid hemorrhage. J Neurosurg 62:698–703

    Article  CAS  PubMed  Google Scholar 

  38. Wang J, Ohta S, Sakaki S, Araki N, Matsuda S, Sakanaka M (1994) Changes in Ca(++)-ATPase activity in smooth-muscle cell membranes of the canine basilar artery with experimental subarachnoid hemorrhage. J Neurosurg 80:269–275

    Article  CAS  PubMed  Google Scholar 

  39. Friedrich V, Flores R, Sehba FA (2012) Cell death starts early after subarachnoid hemorrhage. Neurosci Lett 512:6–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Chunxi Wang, Guangbin Xie, and Yuqiu Lu for their technical assistance. This study was supported by the National Natural Science Foundation, China (nos. 81371294, 31071085, and 31371060).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kuanyu Li or Chun-Hua Hang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, H., Zhang, D., Hao, S. et al. Role of Mitochondrial Calcium Uniporter in Early Brain Injury After Experimental Subarachnoid Hemorrhage. Mol Neurobiol 52, 1637–1647 (2015). https://doi.org/10.1007/s12035-014-8942-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-014-8942-z

Keywords

Navigation