Skip to main content

Advertisement

Log in

Therapeutic Effect of Transplanted Human Wharton’s Jelly Stem Cell-Derived Oligodendrocyte Progenitor Cells (hWJ-MSC-derived OPCs) in an Animal Model of Multiple Sclerosis

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Multiple sclerosis (MS) is an immune-mediated demyelinating disease of the central nervous system (CNS). A potential new therapeutic approach for MS is cell transplantation which may promote remyelination. We transplanted human Wharton’s jelly stem cell-derived oligodendrocyte progenitor cells (hWJ-MSC-derived OPCs) into the brain ventricles of mice induced with experimental autoimmune encephalomyelitis (EAE), the animal model of MS. We studied the effect of the transplanted OPCs on the functional and pathological manifestations of the disease. Transplanted hWJ-MSC-derived OPCs significantly reduced the clinical signs of EAE. Histological examinations showed that remyelination was significantly increased after transplantation. These results suggest that hWJ-MSC-derived OPCs promote the regeneration of myelin sheaths in the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Gironi M, Bergami A, Brambilla E, Ruffini F, Furlan R et al (2000) Immunological markers in multiple sclerosis. Neurol Sci 21(4 Suppl 2):S871–S875

    Article  CAS  PubMed  Google Scholar 

  2. Hemmer B, Cepok S, Nessler S, Sommer N (2002) Pathogenesis of multiple sclerosis: an update on immunology. Curr Opin Neurol 15:227–231

    Article  PubMed  Google Scholar 

  3. Lassmann H (2002) Mechanisms of demyelination and tissue destruction in multiple sclerosis. Clin Neurol Neurosurg 104:168–171

    Article  PubMed  Google Scholar 

  4. Franklin RJ (2002) Why does remyelination fail in multiple sclerosis? Nat Rev Neurosci 3:705–714

    Article  CAS  PubMed  Google Scholar 

  5. Kornek B, Storch MK, Weissert R, Wallstroem E, Stefferl A et al (2000) Multiple sclerosis and chronic autoimmune encephalomyelitis: a comparative quantitative study of axonal injury in active, inactive, and remyelinated lesions. Am J Pathol 157:267–276

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Trapp BD, Peterson J, Ransohoff RM, Rudick R, Mork S et al (1998) Axonal transection in the lesions of multiple sclerosis. N Engl J Med 338:278–285

    Article  CAS  PubMed  Google Scholar 

  7. Ferguson B, Matyszak MK, Esiri MM, Perry VH (1997) Axonal damage in acute multiple sclerosis lesions. Brain 120:393–399

    Article  PubMed  Google Scholar 

  8. Lovas G, Szilagyi N, Majtenyi K, Palkovits M, Komoly S (2000) Axonal changes in chronic demyelinated cervical spinal cord plaques. Brain 123:308–317

    Article  PubMed  Google Scholar 

  9. Pluchino S, Zanotti L, Brini E et al (2009) Regeneration and repair in multiple sclerosis: the role of cell transplantation. Neurosci Lett 456:101–106

    Article  CAS  PubMed  Google Scholar 

  10. Ho TS, Tsai CY, Tsao N, Chow NH, Lei HY (1997) Infiltrated cells in experimental allergic encephalomyelitis by additional intracerebral injection in myelin-basic-protein-sensitizedB6 mice. J Biomed Sci 4:300–307

    Article  CAS  PubMed  Google Scholar 

  11. Tsai CY, Chow NH, Ho TS, Lei HY (1997) Intracerebral injection of myelin basic protein (MBP) induces inflammation in brain and causes paraplegia in MBP-sensitized B6 mice. Clin Exp Immunol 109:127–133

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Merodio M, Irache JM, Eclancher F, Mirshahi M, Villarroya H (2000) Distribution of albumin nanoparticles in animals induced with the experimental allergic encephalomyelitis. J Drug Target 8:289–303

    Article  CAS  PubMed  Google Scholar 

  13. Engelhardt B (2006) Molecular mechanisms involved in T cell migration across the blood–brain barrier. J Neural Transm 113:477–485

    Article  CAS  PubMed  Google Scholar 

  14. Rakic LM, Zlokovic BV, Segal MB, Lipovac MH, Mitrovic DM et al (1989) Effects of sensory-motor cortical lesions on blood–brain permeability in guinea pigs. Metab Brain Dis 4:9–15

    Article  CAS  PubMed  Google Scholar 

  15. Kennea NL, Waddington SN, Chan J, O’Donoghue K, Yeung D, Taylor DL et al (2009) Differentiation of human fetal mesenchymal stem cells into cells with an oligodendrocyte phenotype. Cell Cycle 8(7):1069–1079

    Article  CAS  PubMed  Google Scholar 

  16. Louro J, Pearse D (2008) Stem and progenitor cell therapies: recent progress for spinal cord injury repair. Neurol Res 30(1):5–16

    Article  CAS  PubMed  Google Scholar 

  17. Ogawa S-I, Tokumoto Y, Miyake J, Nagamune T (2011) Induction of oligodendrocyte differentiation from adult human fibroblast-derived induced pluripotent stem cells. In Vitro Cell Dev Biol Anim 47(7):464–469

    Article  CAS  PubMed  Google Scholar 

  18. Zhang L, Zhang H-T, Hong S-Q, Ma X, Jiang X-D, Xu R-X (2009) Cografted Wharton’s jelly cells-derived neurospheres and BDNF promote functional recovery after rat spinal cord transection. Neurochem Res 34(11):2030–2039

    Article  CAS  PubMed  Google Scholar 

  19. Shang A-J, Hong S-Q, Xu Q, Wang H-Y, Yang Y, Wang Z-F et al (2011) NT-3-secreting human umbilical cord mesenchymal stromal cell transplantation for the treatment of acute spinal cord injury in rats. Brain Res 1391:102–113

    Article  CAS  PubMed  Google Scholar 

  20. Margossian T, Reppel L, Makdissy N, Stoltz J-F, Bensoussan D, Huselstein C (2012) Mesenchymal stem cells derived from Wharton’s jelly: comparative phenotype analysis between tissue and in vitro expansion. Biomed Mater Eng 22(4):243–254

    PubMed  Google Scholar 

  21. Kerschensteiner M, Stadelmann C, Buddeberg BS, Merkler D, Bareyre FM, Anthony DC, Linington C, Bruck W, Schwab ME (2004) Targeting EAE lesions to a predetermined axonal tract system allows for refined behavioral testing in an animal model of multiple sclerosis. Am J Pathol 164:1455–1469

    Article  PubMed Central  PubMed  Google Scholar 

  22. Meyer R, Weissert R, Diem R, Storch MK, de Graaf KL, Kramer B, Bahr M (2001) Acute neuronal apoptosis in a rat model of multiple sclerosis. J Neurosci 21:6214–6220

    CAS  PubMed  Google Scholar 

  23. Stefferl A, Brehm U, Storch M, Lambracht-Washington D, Bourquin C, Wonigeit K, Lassmann H, Linington C (1999) Myelin oligodendrocyte glycoprotein induces experimental autoimmune encephalomyelitis in the “resistant” brown Norway rat: disease susceptibility is determined by MHC and MHC-linked effects on the B cell response. J Immunol 163:40–49

    CAS  PubMed  Google Scholar 

  24. Wang S, Guan Q, Diao H, Lian D, Zhong R et al (2007) Prolongation of cardiac allograft survival by inhibition of ERK1/2 signaling in a mouse model. Transplantation 83:323–332

    Article  CAS  PubMed  Google Scholar 

  25. Keirstead HS, Nistor G, Bernal G, Totoiu M, Cloutier F, Sharp K, Steward O (2005) Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants remyelinate and restore locomotion after spinal cord injury. J Neurosci 25:4694–4705

    Article  CAS  PubMed  Google Scholar 

  26. Copray S, Balasubramaniyan V, Levenga J, de Bruijn J, Liem R, Boddeke E (2006) Olig2 over expression induces the in vitro differentiation of neural stem cells into mature oligodendrocytes. Stem Cells 24:1001–1010

    Article  CAS  PubMed  Google Scholar 

  27. Kennea NL, Waddington SN, Chan J et al (2009) Differentiation of human fetal mesenchymal stem cells into cells with an oligodendrocyte phenotype. Cell Cycle 8(7):1069–1079

    Article  CAS  PubMed  Google Scholar 

  28. Kang SK, Shin MJ, Jung JS, Kim YG, Kim CH (2006) Autologous adipose tissue-derived stromal cells for treatment of spinal cord injury. Stem Cells Dev 15:583–594

    Article  CAS  PubMed  Google Scholar 

  29. Luo YC, Zhang HT, Cheng HY et al (2010) Differentiation of cryopreserved human umbilical cord blood-derived stromal cells into cells with an oligodendrocyte phenotype. In Vitro Cell Dev Biol Anim 46(7):585–589

    Article  PubMed  Google Scholar 

  30. Totoiu MO, Nistor GI, Lane TE, Keirstead HS (2004) Remyelination, axonal sparing, and locomotor recovery following transplantation of glial-committed progenitor cells into the MHV model of multiple sclerosis. Exp Neurol 187(2):254–265

    Article  CAS  PubMed  Google Scholar 

  31. Chen H, Zhang Y, Yang Z, Zhang H (2013) Human umbilical cord Wharton’s jelly-derived oligodendrocyte precursor-like cells for axon and myelin sheath regeneration. Neural Regen Res 8:890–899

    Google Scholar 

  32. Zhang H-T, Fan J, Cai Y-Q, Zhao S-J, Xue S, Lin J-H et al (2010) Human Wharton’s jelly cells can be induced to differentiate into growth factor-secreting oligodendrocyte progenitor-like cells. Differentiation 79(1):15–20

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the Iran National Science Foundation for the financial supports (INSF) and the Cellular & Molecular Research Center of Iran University of Medical Sciences for providing us the facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elmira Mikaeili Agah.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mikaeili Agah, E., Parivar, K. & Joghataei, M.T. Therapeutic Effect of Transplanted Human Wharton’s Jelly Stem Cell-Derived Oligodendrocyte Progenitor Cells (hWJ-MSC-derived OPCs) in an Animal Model of Multiple Sclerosis. Mol Neurobiol 49, 625–632 (2014). https://doi.org/10.1007/s12035-013-8543-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-013-8543-2

Keywords

Navigation