Skip to main content
Log in

Central Nervous System Involvement in the Animal Model of Myodystrophy

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Congenital muscular dystrophies present mutated gene in the LARGE mice model and it is characterized by an abnormal glycosylation of α-dystroglycan (α-DG), strongly implicated as having a causative role in the development of central nervous system abnormalities such as cognitive impairment seen in patients. However, the pathophysiology of the brain involvement remains unclear. Therefore, the objective of this study is to evaluate the oxidative damage and energetic metabolism in the brain tissue as well as cognitive involvement in the LARGE(myd) mice model of muscular dystrophy. With this aim, we used adult homozygous, heterozygous, and wild-type mice that were divided into two groups: behavior and biochemical analyses. In summary, it was observed that homozygous mice presented impairment to the habituation and avoidance memory tasks; low levels of brain-derived neurotrophic factor (BDNF) in the prefrontal cortex, hippocampus, cortex and cerebellum; increased lipid peroxidation in the prefrontal cortex, hippocampus, striatum, and cerebellum; an increase of protein peroxidation in the prefrontal cortex, hippocampus, striatum, cerebellum, and cortex; a decrease of complex I activity in the prefrontal cortex and cerebellum; a decrease of complex II activity in the prefrontal cortex and cerebellum; a decrease of complex IV activity in the prefrontal cortex and cerebellum; an increase in the cortex; and an increase of creatine kinase activity in the striatum and cerebellum. This study shows the first evidence that abnormal glycosylation of α-DG may be affecting BDNF levels, oxidative particles, and energetic metabolism thus contributing to the memory storage and restoring process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. van der Knaap MS, Smit LM, Barth PG, Catsman-Berrevoets CE, Brouwer OF, Begeer JH (2007) Magnetic resonance imaging in classification of congenital muscular dystrophies with brain abnormalities. Ann Neurol 42:50–59

    Article  Google Scholar 

  2. Parano E, Pavone L, Fiumara A, Falsaperla R, Trifiletti RR, Dobyns WB (1995) Congenital muscular dystrophies: clinical review and proposed classification. Pediatr Neurol 13:97–103

    Article  PubMed  CAS  Google Scholar 

  3. Jimenez-Mallebrera C, Brown SC, Sewry CA, Muntoni F (2005) Congenital muscular dystrophy: molecular and cellular aspects. Cell Mol Life Sci 62:809–823

    Article  PubMed  CAS  Google Scholar 

  4. Lane PW, Beamer TC, Myers DD (1976) Myodystrophy, a new myopathy on chromosome 8 of the mouse. J Hered 67:135–138

    PubMed  CAS  Google Scholar 

  5. Rayburn HB, Peterson AC (1978) Naked axons in myodystrophic mice. Brain Res 146:380–384

    Article  PubMed  CAS  Google Scholar 

  6. Michele DE, Barresi R, Kanagawa M (2002) Post-translational disruption of dystroglycan–ligand interactions in congenital muscular dystrophies. Nature 418:417–421

    Article  PubMed  CAS  Google Scholar 

  7. Holzfeind PJ, Grewal PK, Reitsamer HA (2002) Skeletal, cardiac and tongue muscle pathology, defective retinal transmission, and neuronal migration defects in the Large(myd) mouse defines a natural model for glycosylation-deficient muscle–eye–brain disorders. Hum Mol Genet 11:2673–2687

    Article  PubMed  CAS  Google Scholar 

  8. Longman C, Brockington M, Torelli S, Jimenez-Mallebrera C, Kennedy C, Khalil N, Feng L, Saran RK, Voit T, Merlini L, Sewry CA, Brown SC, Muntoni F (2003) Mutations in the human LARGE gene cause MDC1D, a novel form of congenital muscular dystrophy with severe mental retardation and abnormal glycosylation of alpha-dystroglycan. Hum Mol Genet 12:2853–2861

    Article  PubMed  CAS  Google Scholar 

  9. Yoshida A, Kobayashi K, Manya H, Taniguchi K, Kano H, Mizuno M, Inazu T, Mitsuhashi H, Takahashi S, Takeuchi M, Herrmann R, Straub V, Talim B, Voit T, Topaloglu H, Toda T, Endo T (2001) Muscular and neuronal migration disorder caused by mutations in a glycosyltransferase, POMGnT1. Dev Cell 1:717–724

    Article  PubMed  CAS  Google Scholar 

  10. Li J, Yu M, Feng G, Hu H, Li X (2001) Breaches of the pial basement membrane are associated with defective dentate gyrus development in mouse models of congenital muscular dystrophies. Neurosci Lett 505:19–24

    Article  Google Scholar 

  11. Bramham CR, Messaoudi E (2005) BDNF function in adult synaptic plasticity: the synaptic consolidation hypothesis. Prog Neurobiol 76:99–125

    Article  PubMed  CAS  Google Scholar 

  12. Francia N, Cirulli F, Chiarotti F, Antonelli A, Aloe L, Alleva E (2006) Spatial memory deficits in middle-aged mice correlate with lower exploratory activity and a subordinate status: role of hippocampal neurotrophins. Eur J Neurosci 23:711–728

    Article  PubMed  CAS  Google Scholar 

  13. Floyd RA (1999) Antioxidants, oxidative stress, and degenerative neurological disorders. Proc Soc Exp Biol Med 222:236–245

    Article  PubMed  CAS  Google Scholar 

  14. Rosen DR, Siddique T, Patterson D, Figlewicz DA, Sapp P, Hentati A, Donald-son D, Goto J, O’Regan JP, Deng HX, Rahmani Z, Krizus A, McKenna-Yasek D, Cayabyab A, Gaston SM, Berger R, Tanzi RE, Halperin JJ, Herzfeldt B, Bergh RV, Hung W-Y, Bird T, Deng G, Mulder DW, Smyth C, Laing NG, Soriano E, Pericak-Vance MA, Haines J, Rouleau GA, Gusella JSH, Horvitz R, Brown RH Jr (1993) Mutations in Cu/Zn-superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362:59–62

    Article  PubMed  CAS  Google Scholar 

  15. Durany N, Munch G, Michel T, Riederer P (1999) Investigations on oxidative stress and therapeutical implications in dementia. Eur Arch Psychiatr Clin Neurosci 249:68–73

    Article  Google Scholar 

  16. Abraham S, Soundararajan CC, Vivekanandhan S, Behari M (2005) Erythrocyte antioxidant enzymes in Parkinson’s disease. Indian J Med Res 121:111–115

    PubMed  CAS  Google Scholar 

  17. Lucca G, Comim CM, Valvassori SS, Reus GZ, Vuolo F, Petronilho F, Gavioli EC, Dal-Pizzol F, Quevedo J (2009) Increased oxidative stress in submitochondrial particles into the brain of rats submitted to the chronic mild stress paradigm. J Psychiatr Res 43:864–869

    Article  PubMed  Google Scholar 

  18. Lucca G, Comim CM, Valvassori SS, Reus GZ, Vuolo F, Petronilho F, Dal-Pizzol F, Gavioli EC, Quevedo J (2009) Effects of chronic mild stress on the oxidative parameters in the rat brain. Neurochem Int 54:358–362

    Article  PubMed  CAS  Google Scholar 

  19. Comim CM, Cassol-Jr OJ, Constantino LC, Constantino LS, Petronilho F, Tuon L, Vainzof M, Dal-Pizzol F, Quevedo J (2009) Oxidative variables and antioxidant enzymes activities in the mdx mouse brain. Neurochem Int 55:802–805

    Article  PubMed  CAS  Google Scholar 

  20. Heales SJ, Bolaños JP, Stewart VC, Brookes PS, Land JM, Clark J (1999) Nitric oxide, mitochondria and neurological disease. Biochim Biophys Acta 1410:215–228

    Article  PubMed  CAS  Google Scholar 

  21. Wyss M, Kaddurah-Daouk R (2003) Creatine and creatinine metabolism. Physiol Rev 3(110):8–1182

    Google Scholar 

  22. Browning CA, Grewal PK, Moore CJ, Hewitt JE (2005) A rapid PCR method for genotyping the Large(myd) mouse, a model of glycosylation-deficient congenital muscular dystrophy. Neuromuscul Disord 15:331–335

    Article  PubMed  Google Scholar 

  23. Esterbauer H, Cheeseman KH (1990) Determination of aldehydic lipid peroxidation products: malonaldehyde and 4-hydroxynonenal. Methods Enzymol 186:407–421

    Article  PubMed  CAS  Google Scholar 

  24. Levine RL, Williams JA, Stadtman ER, Shacter E (1994) Carbonyl assays for determination of oxidatively modified proteins. Methods Enzymol 233:346–357

    Article  PubMed  CAS  Google Scholar 

  25. Cassina A, Radi R (1996) Differential inhibitory action of nitric oxide and peroxynitrite on mitochondrial electron transport. Arch Biochem Biophys 328:309–316

    Article  PubMed  CAS  Google Scholar 

  26. Fischer JC, Ruitenbeek W, Berden JA, Trijbels JM, Veerkamp JH, Stadhouders AM, Sengers RC, Janssen AJ (1985) Differential investigation of the capacity of succinate oxidation in human skeletal muscle. Clin Chim Acta 153:23–36

    Article  PubMed  CAS  Google Scholar 

  27. Miro O, Cardellach F, Barrientos A, Casademont J, Rotig A, Rustin P (1998) Cytochrome c oxidase assay in minute amounts of human skeletal muscle using single wavelength spectrophotometers. J Neurosci Meth 80:107–111

    Article  CAS  Google Scholar 

  28. Hughes BP (1962) A method for the estimation of serum creatine kinase and its use in comparing creatine kinase and aldolase activity in normal and pathological sera. Clin Chim Acta 7:597–603

    Article  PubMed  CAS  Google Scholar 

  29. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 1:265–275

    Google Scholar 

  30. Zaccaria ML, di Tommaso F, Brancaccio A, Paggi P, Petrucci TC (2001) Dystroglycan distribution in adult mouse brain: a light and electron microscopy study. Neuroscience 104:311–324

    Article  PubMed  CAS  Google Scholar 

  31. Anderson JL, Head SI, Rae C, Morley JW (2002) Brain function in Duchenne muscular dystrophy. Brain 125:4–13

    Article  PubMed  CAS  Google Scholar 

  32. Huang CC, Kuo HC (2005) Myotonic dystrophies. Chang Gung Med J 28:517–526

    PubMed  Google Scholar 

  33. Tuon L, Comim CM, Fraga DB, Scaini G, Rezin GT, Baptista BR, Streck EL, Vainzof M, Quevedo J (2010) Mitochondrial respiratory chain and creatine kinase activities in mdx mouse brain. Muscle Nerve 41:257–260

    Article  PubMed  CAS  Google Scholar 

  34. Halliwell B, Gutteridge JM (1997) Lipid peroxidation in brain homogenates: the role of iron and hydroxyl radicals. J Neurochem 69:1330–1331

    Article  PubMed  CAS  Google Scholar 

  35. Mancuso C, Scapagini G, Currò D, Giuffrida Stella AM, De Marco C, Butterfield DA, Calabrese V (2007) Mitochondrial dysfunction, free radical generation and cellular stress response in neurodegenerative disorders. Front Biosci 12:1107–1123

    Article  PubMed  CAS  Google Scholar 

  36. Navarro A, Boveris A (2007) The mitochondrial energy transduction system and the aging process. Am J Physiol Cell Physiol 292:C670–C 686

    Article  PubMed  CAS  Google Scholar 

  37. Lipton P, Whittingham TS (1982) Reduced ATP concentration as a basis for synaptic transmission failure during hypoxia in the in vitro guinea pig hippocampus. J Physiol 325:51–65

    PubMed  CAS  Google Scholar 

  38. Green DE, Fry M (1980) On reagents that convert cytochrome oxidase from an inactive to an active coupling state. Proc Nat l Acad Sci USA 77(1951–19):55

    Google Scholar 

  39. Brustovetsky N, Brustovetsky T, Dubinsky JM (2001) On the mechanisms of neuroprotection by creatine and phosphocreatine. J Neuro Chem 76:425–434

    CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by grants from CNPq (CMC, JQ, FD-P, and ELS), FAPESC (JQ, FD-P and ELS), and UNESC (JQ, FD-P, and ELS). ELS, FDP, and JQ are CNPq research fellows. CMC is a holder of a CNPq studentship.

Conflict of interest

None of the authors or funding sources has conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clarissa M. Comim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Comim, C.M., Mendonça, B.P., Dominguini, D. et al. Central Nervous System Involvement in the Animal Model of Myodystrophy. Mol Neurobiol 48, 71–77 (2013). https://doi.org/10.1007/s12035-013-8415-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-013-8415-9

Keywords

Navigation