Skip to main content
Log in

Synthesis, characterization and supercapacitor application of nanourchin-like VO2

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Nanourchin VO2 nanostructures have been effectively synthesized by hydrothermal method. The synthesized hierarchical nanostructure has been characterized by various characterization techniques and electrochemical behaviour has been studied. X-ray diffraction analysis revealed the monoclinic phase and morphological analysis (FESEM) of VO2 showed nanourchin-like structure with arrangement of various nanorods in radial fashion. Over these nanorods, formation of secondary growth of asterisk-shape structure was observed. The width and length of nanorods were ~ 50 and ~ 75 nm, respectively. For the electrochemical measurements, 2032 type coin cells were fabricated using VO2 as electrode material. The electrochemical study of VO2 exhibited the pseudocapacitive behaviour with specific capacitance of 44 F g−1 in organic electrolyte with symmetric capacitor of two electrode system. The maximum energy density and power density were 44 and 8635 Wh kg−1, respectively. Cycling performance exhibited symmetric charge–discharge curves, and also specific capacitance was maintained up to 82% of initial value.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Tarascon J M and Armand M 2001 Nature 414 359 https://doi.org/10.1038/35104644

    Article  CAS  PubMed  Google Scholar 

  2. Etacheri V, Marom R, Elazari R, Salitra G and Aurbach D 2011 Energy Environ. Sci. 4 3243 https://doi.org/10.1039/c1ee01598b

    Article  CAS  Google Scholar 

  3. Manthiram A 2011 J. Phys. Chem. Lett. 2 176 https://doi.org/10.1021/jz1015422

    Article  CAS  Google Scholar 

  4. Vlad A, Singh N, Rolland J, Melinte S, Ajayan P M and Gohy J F 2014 Sci. Rep. 4 1 https://doi.org/10.1038/srep04315

    Article  CAS  Google Scholar 

  5. Tie D, Huang S, Wang J, Ma J, Zhang J and Zhao Y 2019 Energy Storage Mater. 21 22 https://doi.org/10.1016/j.ensm.2018.12.018

    Article  Google Scholar 

  6. Wang M, Zhao Y, Zhang X, Qi R, Shi S, Li Z et al 2018 Electrochim. Acta 272 184 https://doi.org/10.1016/j.electacta.2018.04.005

    Article  CAS  Google Scholar 

  7. Zhang X, Wang M, Jin F, Zhang X, Wang J, Huang S et al 2017 ACS Sustain. Chem. Eng. 5 5679 https://doi.org/10.1021/acssuschemeng.7b00131

    Article  CAS  Google Scholar 

  8. Zhang J, Terrones M, Park C R, Mukherjee R, Monthioux M, Koratkar N et al 2016 Carbon NY 98 708 https://doi.org/10.1016/j.carbon.2015.11.060

    Article  CAS  Google Scholar 

  9. Inagaki M, Konno H and Tanaike O 2010 J. Power Sources 195 7880 https://doi.org/10.1016/j.jpowsour.2010.06.036

    Article  CAS  Google Scholar 

  10. Lokhande C D, Dubal D P and Joo O S 2011 Curr. Appl. Phys. 11 255 https://doi.org/10.1016/j.cap.2010.12.001

    Article  Google Scholar 

  11. Shown I, Ganguly A, Chen L C and Chen K H 2015 Energy Sci. Eng. 3 2 https://doi.org/10.1002/ese3.50

    Article  CAS  Google Scholar 

  12. Basu R, Ghosh S, Bera S, Das A and Dhara S 2019 Sci. Rep. 9 1 https://doi.org/10.1038/s41598-019-40225-1

    Article  CAS  Google Scholar 

  13. Zhang Q, Wang X, Pan Z, Sun J, Zhao J, Zhang J et al 2017 Nano Lett. 17 2719 https://doi.org/10.1021/acs.nanolett.7b00854

    Article  CAS  PubMed  Google Scholar 

  14. Yan Y, Li B, Guo W, Pang H and Xue H 2016 J. Power Sources 329 148 https://doi.org/10.1016/j.jpowsour.2016.08.039

    Article  CAS  Google Scholar 

  15. Birajdar S N, Hebalkar N Y, Pardeshi S K, Kulkarni S K and Adhyapak P V 2019 RSC Adv. 9 28735 https://doi.org/10.1039/c9ra04382a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rakhi R B, Nagaraju D H, Beaujuge P and Alshareef H N 2016 Electrochim. Acta 220 601 https://doi.org/10.1016/j.electacta.2016.10.109

    Article  CAS  Google Scholar 

  17. Chen D, Yi R, Chen S, Xu T, Gordin M L, Lv D et al 2014 Mater. Sci. Eng. B Solid State Mater. Adv. Technol. 185 7 https://doi.org/10.1016/j.mseb.2014.01.015

    Article  CAS  Google Scholar 

  18. Cheng J, Wang B, Xin H L, Yang G, Cai H, Nie F et al 2013 J. Mater. Chem. A 1 10814 https://doi.org/10.1039/c3ta12066j

    Article  CAS  Google Scholar 

  19. Li Y, Yao J, Uchaker E, Yang J, Huang Y, Zhang M et al 2013 Adv. Energy Mater. 3 1171 https://doi.org/10.1002/aenm.201300188

    Article  CAS  Google Scholar 

  20. Panigrahi K, Howli P and Chattopadhyay K 2019 Mater. Lett. 253 90 https://doi.org/10.1016/j.matlet.2019.06.034

    Article  CAS  Google Scholar 

  21. Chen S, Yu H, Chen L, Jiang H and Li C 2021 Chem. Eng. J. 423 130208 https://doi.org/10.1016/j.cej.2021.130208

    Article  CAS  Google Scholar 

  22. Man P, Zhang Q, Sun J, Guo J, Wang X, Zhou Z et al 2018 Carbon NY 139 21 https://doi.org/10.1016/j.carbon.2018.06.041

    Article  CAS  Google Scholar 

  23. Ren G, Zhang R and Fan Z 2018 Appl. Surf. Sci. 441 466 https://doi.org/10.1016/j.apsusc.2018.02.059

    Article  CAS  Google Scholar 

  24. Liu Y, Zhang Y, Hu T, Mu Y, Sun J, Zheng J et al 2020 Colloids Surf. A Physicochem. Eng. Asp. 586 124222 https://doi.org/10.1016/j.colsurfa.2019.124222

    Article  CAS  Google Scholar 

  25. Lindberg S, Ndiaye N M, Manyala N, Johansson P and Matic A 2020 Electrochim. Acta 345 136225 https://doi.org/10.1016/j.electacta.2020.136225

    Article  CAS  Google Scholar 

  26. Zhang J, Chen L, Wang Y, Cai S, Peng Y, Yang H et al 2018 Nanomaterials 8 1

    Google Scholar 

  27. Ndiaye N M, Madito M J, Ngom B D, Masikhwa T M, Mirghni A A and Manyala N 2019 AIP Adv. 9 055309 https://doi.org/10.1063/1.5091799

    Article  CAS  Google Scholar 

  28. Pan X, Zhao Y, Ren G and Fan Z 2013 Chem. Commun. 49 3943 https://doi.org/10.1039/c3cc00044c

    Article  CAS  Google Scholar 

  29. Ma X J, Bin Zhang W, Bin Kong L, Luo Y C and Kang L 2015 RSC Adv. 5 97239 https://doi.org/10.1039/c5ra18758c

    Article  CAS  Google Scholar 

  30. Fan Y, Ouyang D, Li B W, Dang F and Ren Z 2018 Nanoscale Res. Lett. 13 1 https://doi.org/10.1186/s11671-018-2557-7

    Article  CAS  Google Scholar 

  31. Birajdar S N and Adhyapak P V 2020 Ceram. Int. 46 27381 https://doi.org/10.1016/j.ceramint.2020.07.223

    Article  CAS  Google Scholar 

  32. Nagabhushana G P and Chandrappa G T 2013 J. Mater. Chem. A 1 11539 https://doi.org/10.1039/c3ta11692a

    Article  CAS  Google Scholar 

  33. Guo D, Ling C, Wang C, Wang D, Li J, Zhao Z et al 2018 ACS Appl. Mater. Interfaces 10 28627 https://doi.org/10.1021/acsami.8b08908

    Article  CAS  PubMed  Google Scholar 

  34. Karahan O, Tufani A, Unal S, Misirlioglu I B, Menceloglu Y Z and Sendur K 2021 Nanomaterials 11 1 https://doi.org/10.3390/nano11030752

    Article  CAS  Google Scholar 

  35. Zhang H, Xiao X, Lu X, Chai G, Sun Y, Zhan Y et al 2015 J. Alloys Compd. 636 106 https://doi.org/10.1016/j.jallcom.2015.01.277

    Article  CAS  Google Scholar 

  36. Wang Y, Zhu J, Yang W, Wen T, Pravica M, Liu Z et al 2016 Nat. Commun. 7 1 https://doi.org/10.1038/ncomms12214

    Article  CAS  Google Scholar 

  37. Wang M, Cui Z, Xue Y and Zhang R 2018 Cryst. Growth Des. 18 4220 https://doi.org/10.1021/acs.cgd.8b00146

    Article  CAS  Google Scholar 

  38. Aziznezhad M, Goharshadi E and Namayandeh-Jorabchi M 2020 Sol. Energy Mater. Sol. Cells 211 110515 https://doi.org/10.1016/j.solmat.2020.110515

    Article  CAS  Google Scholar 

  39. Song Y, Zhao W, Zhu X, Zhang L, Li Q, Ding F et al 2018 ACS Appl. Mater. Interfaces 10 15733 https://doi.org/10.1021/acsami.8b02920

    Article  CAS  PubMed  Google Scholar 

  40. Surya Bhaskaram D, Cheruku R and Govindaraj G 2016 J. Mater. Sci. Mater. Electron. 27 10855 https://doi.org/10.1007/s10854-016-5194-x

    Article  CAS  Google Scholar 

  41. Zou J, Peng Y and Lin H 2013 J. Mater. Chem. A 1 4250 https://doi.org/10.1039/c3ta01494k

    Article  CAS  Google Scholar 

  42. Wang J, Zhang X, Zhang Y, Abas A, Zhao X, Yang Z et al 2017 RSC Adv. 7 35558 https://doi.org/10.1039/c7ra04376g

    Article  CAS  Google Scholar 

  43. Miao P, Wu J, Du Y, Sun Y and Xu P 2018 J. Mater. Chem. C 6 10855 https://doi.org/10.1039/c8tc04269a

    Article  CAS  Google Scholar 

  44. Wu J M and Liou L B 2011 J. Mater. Chem. 21 5499 https://doi.org/10.1039/C0JM03203D

    Article  CAS  Google Scholar 

  45. Jones A C, Berweger S, Wei J, Cobden D and Raschke M B 2010 Nano Lett. 10 1574 https://doi.org/10.1021/nl903765h

    Article  CAS  PubMed  Google Scholar 

  46. Mu J, Wang J, Hao J, Cao P, Zhao S, Zeng W et al 2015 Ceram. Int. 41 12626 https://doi.org/10.1016/j.ceramint.2015.06.091

    Article  CAS  Google Scholar 

Download references

Acknowledgement

SB thanks Bharatratna JRD Tata Gunwant Sanshodhak Shishyavruti Yojana, for providing the research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parag V Adhyapak.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Birajdar, S.N., Misal, P.S., Kale, B.B. et al. Synthesis, characterization and supercapacitor application of nanourchin-like VO2. Bull Mater Sci 47, 65 (2024). https://doi.org/10.1007/s12034-024-03165-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-024-03165-9

Keywords

Navigation