Skip to main content
Log in

Enhanced optical, electronic and dielectric properties of DBSA-doped polyaniline–calcium titanate composites

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

In this study, calcium titanate (CaTiO3) doped (0, 15, 25 and 35%) polyaniline (PANI) composites in the presence of dodecylbenzene sulphonic acid (DBSA) were successfully synthesized by the means of in-situ emulsion polymerization of aniline monomer. The structural, morphological and optical characterization of as-prepared composites were determined using X-ray diffraction (XRD), field effect scanning electron microscopy, Fourier-transform infrared spectroscopy, UV–vis analysis, and electronic conductivity was determined using two-point probe method. The structural analysis confirms that PANI–DBSA is amorphous, but sharp peaks present in XRD patterns in composites are of crystalline nature. The morphological study reveals efficacious integration of CaTiO3 particles into the PANI–DBSA matrix. Further, the integration of CaTiO3 remarkably reduced the optical bandgap (2.7–2.2 eV) by making composites with PANI–DBSA. Room temperature alternating current conductivity was found to obey universal power law and correlated barrier hopping was found most appropriate model to describe the sample’s charge transport mechanism. With the increasing wt% of CaTiO3, the dielectric permittivity and loss both varied according to the interfacial polarization law of Maxwell–Wagner. Moreover, the I–V graphs showed augmented electrical conductivity of composites with an increase in CaTiO3 particle content than that of pure PANI–DBSA. This is a simple way by which PANI–DBSA/CaTiO3 composites having low optical bandgap, high electrical conductivity and permittivity may be fabricated for a widespread technological application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Saad G R, Ezz A A and Ahmed H A 2015 Thermochim. Acta. 599 84

    Article  CAS  Google Scholar 

  2. Xiong S, Zhang X, Wang R, Lu Y, Li H, Liu J et al 2019 J. Polym. Res. 26 1

    Article  CAS  Google Scholar 

  3. Chahal P, Tummala R R, Allen M G and Swaminathan M A 1998 Comput. Pack. Manuf. Technol. Part. B Adv. Pack. 21 184

  4. Zhang Q, Jiang Y, Yu E and Yang H 2019 Surf. Coat. Technol. 358 293

    Article  CAS  Google Scholar 

  5. Sharma B K, Khare N, Dhawan S K and Gupta H C 2009 J. Alloys Compd. 477 370

    Article  CAS  Google Scholar 

  6. Manjunatha S, Machappa T, Sunilkumar A and Ravikiran Y T 2018 J. Mater. Sci. Mater. Electron. 29 11581

    Article  CAS  Google Scholar 

  7. Park D, Ju H and Kim J 2020 Polymers 12 777

    Article  CAS  Google Scholar 

  8. Ahmed K, Kanwal F, Ramay S M, Atiq S, Rehman R, Ali S M et al 2018 Polymers 10 1273

    Article  Google Scholar 

  9. Almadhoun M N, Bhansali U S and Alshareef H N 2012 J. Mater. Chem. 22 11196

    Article  CAS  Google Scholar 

  10. Xie L, Huang X, Wu C and Jiang P 2011 J. Mater. Chem. 21 5897

    Article  CAS  Google Scholar 

  11. Yang C, Hao S J, Dai S L and Zhang X Y 2017 Carbon 117 301

    Article  CAS  Google Scholar 

  12. Rajappa S, Shivarathri P G, Kumari M L A, Swamygowda D K, Devendrachari M C and Kotresh H M N 2022 Surf. Interfaces 29 101720

    Article  CAS  Google Scholar 

  13. Yarmohamadi-Vasel M, Modarresi-Alam A R, Noroozifar M and Hadavi M S 2019 Synth. Met. 252 50

    Article  CAS  Google Scholar 

  14. Wu K, Gui T, Dong J, Luo J and Liu R 2022 Prog. Org. Coat. 162 106592

    Article  CAS  Google Scholar 

  15. Ugraskan V and Karaman F 2021 J. Electron. Mater. 50 3455

    Article  CAS  Google Scholar 

  16. Kenry and Liu B 2018 Biomacromolecules 19 1783

  17. Das M, Akbar A and Sarkar D 2019 Synth. Met. 249 69

    Article  CAS  Google Scholar 

  18. Liao G, Li Q and Xu Z 2019 Prog. Org. Coat. 126 35

    Article  CAS  Google Scholar 

  19. Hu C, Li T, Yin H, Hu L, Tang J and Ren K 2021 Colloids. Surf. A Physicochem. Eng. Asp. 612 126069

    Article  CAS  Google Scholar 

  20. Najafi M, Ansari R and Darvizeh A 2019 Polym. Compos. 40 2523

    Article  CAS  Google Scholar 

  21. Afilipoaei C and Teodorescu-Draghicescu H 2020 Proceedings 63 23

  22. Reddy K R, Sin B C, Ryu K S, Kim J C, Chung H and Lee Y 2009 Synth. Met. 159 595

    Article  CAS  Google Scholar 

  23. Hassan M, Reddy K R, Haque E, Faisal S N, Ghasemi S, Minett A I et al 2014 Compos. Sci. Technol. 98 1

    Article  CAS  Google Scholar 

  24. Shahabuddin S, Numan A, Shahid M M, Khanam R, Saidur R, Pandey A K et al 2019 Ceram. Int. 45 11428

    Article  CAS  Google Scholar 

  25. Maruthi N, Faisal M, Raghavendra N, Prasanna B P, Nandan K R, Kumar K Y et al 2021 Mater. Chem. Phys. 259 124059

    Article  CAS  Google Scholar 

  26. Li J, Wang Y, Yang X, Kang H, Cao Z, Jiang X et al 2022 Chem. Eng. J. 428 131121

    Article  CAS  Google Scholar 

  27. Tian X, Lian S, Ji C, Huang Z, Wen J, Chen Z et al 2019 J. Alloys Compd. 784 628

    Article  CAS  Google Scholar 

  28. Ahmad K, Kumar P and Mobin S M 2020 Mater. Adv. 1 2003

    Article  CAS  Google Scholar 

  29. Parveen A, Kumar K A, Revanasidappa M, Ekhilikar S and Ambika Prasad M N 2008 Ferroelectrics 377 63

    Article  CAS  Google Scholar 

  30. Roy A S, Hegde S G and Parveen A 2014 Polym. Adv. Technol. 25 130

    Article  CAS  Google Scholar 

  31. Parveen A, Koppalkar A R and Roy A S 2012 IEEE Sens. J. 12 2817

    Article  CAS  Google Scholar 

  32. Bibi A, Shakoor A and Niaz N A 2022 Polym. Polym. Compos. 30 1

    Google Scholar 

  33. Bibi A, Shakoor A, Niaz N A, Haider S and Akhtar M S 2022 Polym. Bull. 10 1

    Google Scholar 

  34. Han C, Liu J, Yang W, Wu Q, Yang H and Xue X 2017 J. Sol-Gel Sci. Technol. 81 806

    Article  CAS  Google Scholar 

  35. Misoon O and Seok K 2012 Electrochim. Acta 59 196

    Article  CAS  Google Scholar 

  36. Ravikiran Y T, Lagare M T, Sairam M, Mallikarjuna N N, Sreedhar B, Manohar S et al 2006 Synth. Met. 156 1139

    Article  CAS  Google Scholar 

  37. Zilberman M, Titelman G I, Siegmann A, Haba Y, Narkis M and Alperstein D 1997 J. Appl. Polym. Sci. 66 243

    Article  CAS  Google Scholar 

  38. Blinova N V, Stejskal J, Trchová M, Prokeš J and Omastová M 2007 Eur. Polym. J. 43 2331

    Article  CAS  Google Scholar 

  39. Stejskal J 2013 Chem. Pap. 67 814

    Article  CAS  Google Scholar 

  40. Babazadeh M 2009 J. Appl. Polym. Sci. 113 3980

    Article  CAS  Google Scholar 

  41. Saini P, Choudhary V, Sood K N and Dhawan S K 2009 J. Appl. Polym. Sci. 113 3146

    Article  CAS  Google Scholar 

  42. Marie E, Rothe R, Antonietti M and Landfester K 2003 Macromolecules 36 3967

    Article  CAS  Google Scholar 

  43. Milton A J and Monkman A P 1993 J. Phys. D Appl. Phys. 26 1468

    Article  CAS  Google Scholar 

  44. Suthar V, Pratap A and Raval H 2000 Bull. Mater. Sci. 23 215

    Article  CAS  Google Scholar 

  45. Ghosh P, Siddhanta S K, RejaulHaque S and Chakrabarti A 2001 Synth. Met. 123 83

    Article  CAS  Google Scholar 

  46. Som S, Kunti A K, Kumar V, Kumar V, Dutta S, Chowdhury M et al C 2014 J. Appl. Phys. 115 193101

  47. Anju V P and Narayanankutty S K 2019Polym. Bull. 76 5253

  48. Tauc J 1969 Optical properties of solids (Boston, MA: Springer) p 123

  49. Khan M D A, Akhtar A and Nabi S A 2015 New J. Chem. 39 3728

    Article  CAS  Google Scholar 

  50. Debnath T, Chakraborty T, Bandyopadhyay A, Sharma S, Mahapatra A S, Das S et al 2022 Mater. Sci. Eng. B 280 115688

    Article  CAS  Google Scholar 

  51. Saravanan S, Mathai C J, Anantharaman M R, Venkatachalam S and Prabhakaran P V 2006 J. Phys. Chem. Solids 67 1496

    Article  CAS  Google Scholar 

  52. Xiang J and Drzal L T 2012 Polymer 53 4202

    Article  CAS  Google Scholar 

  53. Manjunatha S, Megha R, Chethan B, Prashantkumar M, Ravikiran Y T and Machappa T 2021 JMEPEG 30 1885

    Article  CAS  Google Scholar 

  54. Vijayalakshmi S, Kumar E and Nithya S 2020 Ionics 26 839

    Article  CAS  Google Scholar 

  55. Sampreeth T, Al-Maghrabi M A, Bahuleyan B K and Ramesan M T 2018 J. Mater. Sci. 53 591

    Article  CAS  Google Scholar 

  56. Jonscher A K 1981 J. Mater. Sci. 16 2037

    Article  CAS  Google Scholar 

  57. Jebli M, Rayssi C, Dhahri J and Khirouni K 2020 Appl. Phys. A 126 109

    Article  CAS  Google Scholar 

  58. Baruah S, Kumar S, Nayak B and Puzari A 2021 Polym. Bull. 78 1703

    Article  CAS  Google Scholar 

  59. Ruokolainen J, Torkkeli M, Serimaa R, Vahvaselkä S, Saariaho M, Ten Brinke G et al 1996 Macromolecules 29 6621

    Article  CAS  Google Scholar 

  60. Dhole S G, Dake S A, Prajapati T A and Helambe S N 2018 Proc. Manufact. 20 127

    Article  Google Scholar 

  61. Vijayalakshmi S, Kumar E, Ganeshbabu M, Venkatesh P S and Rathnakumar K 2021 Ionics 27 2967

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ariba Bibi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bibi, A., Shakoor, A., Niaz, N.A. et al. Enhanced optical, electronic and dielectric properties of DBSA-doped polyaniline–calcium titanate composites. Bull Mater Sci 46, 185 (2023). https://doi.org/10.1007/s12034-023-03022-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-023-03022-1

Keywords

Navigation