Skip to main content
Log in

Experimental performance evaluation of non-toxic metal oxide synthesized via solid-state reaction for room temperature-sensing applications

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

An organized analysis of a metal oxide (BaTiO3) synthesized via solid-state reaction coated on FTO (fluorine-doped tin oxide) substrate for multiple applications is attentively done. The dominant characteristic (110) peak plane authenticates the tetragonal structure formation (structural properties). The bandgap calculated (tauc’s plot) from the absorbance spectrum is 3.2 eV. The experimental evaluation of the fabricated gas sensor was done using a gas sensing setup for the toxic gases with carbon monoxide (CO) and methane (CH4). The response time (~1.86 s (5 ppm), 2.74 s (~10 ppm)) and the recovery time (~8.68 s (5 ppm), ~5.23 s (10 ppm)) under CO were found to be better compared with CH4. The fabricated gas sensor showed ~11.5% (5 ppm) and ~16.2% (10 ppm) of sensor response to CO gas, higher than CH4. In addition, the fabricated sensor’s performance is extended to acceleration application. An output voltage of ~1.16 V at a resonant frequency of 10 Hz is obtained. The fabricated BaTiO3 sensor is used to explore multifunctional sensing properties, i.e., to detect and sense toxic gases (CO and CH4), and acceleration of both of these sensing properties work well together for the mine industry. Only a few literature use BaTiO3 for multifunctional sensing applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Ramany K, Shankararajan R, Savarimuthu K, Venkatachalapathi S, Gunasekaran I and Rajamanickam G 2022 Nanotechnology 33 035713

    Article  CAS  Google Scholar 

  2. Ramany K, Shankararajan R, Savarimuthu K, Gunasekaran I, Rajamanickam G and Narendhiran S 2020 IEEE Trans. Nanotechnol. 19 728

    Article  CAS  Google Scholar 

  3. Ren P, Lingling K Q and Shi Q 2022 Nanomaterials 12 228

    Article  CAS  Google Scholar 

  4. Sertel B C, Efkere H I and Ozcelik S 2020 IEEE Sens. J. 20 13436

    Article  CAS  Google Scholar 

  5. Simion C E, Ghica C, Mihalcea C G, Ghica D, Mercioniu I and Somacescu S 2021 Chemosensors 9 224

    Article  Google Scholar 

  6. Steinhauer S, Brunet E, Maier T, Mutinati G C, Kock A and Freudenberg O 2013 Sens. Actuators B Chem. 187 50

    Article  CAS  Google Scholar 

  7. Alia H M, Shokr E K, Taya Y A, Elkot S A, Hasaneen M F and Mohamed W S 2022 Sens. Actuators A Phys. 335 113355

    Article  Google Scholar 

  8. Dutta D P, Roy M, Maiti N and Tyagi A K 2016 Phys. Chem. Chem. Phys. 18 9758

    Article  CAS  Google Scholar 

  9. Patil R P, More P V, Jain G H, Khanna P K and Gaikwad V B 2017 Vacuum 146 455

    Article  CAS  Google Scholar 

  10. Singh M, Yadav B C, Ranjan A, Kaur M and Gupta S K 2017 Sens. Actuators B Chem. 241 1170

    Article  CAS  Google Scholar 

  11. Vijatovic Petrovic M M, Radojkovic A, Bobic J D, Dzunuzovic A, Llic N and Stojanovic B D 2019 J. Mater. Sci. 54 6038

    Article  CAS  Google Scholar 

  12. Koka A and Sodano H A 2013 Nat. Commun. 4 2682

    Article  Google Scholar 

  13. Kosa A, Zhou Z, Tang H and Sodano H 2014 Nanotechnology 25 375603

    Article  Google Scholar 

  14. Baby Sreeja S D, Gopalan S and Sreekala C O 2020 Mater. Today Proc. 05 042 2214

    Google Scholar 

  15. Kappadan S, Gebreab T W, Thomas S and Kalarikkal N 2016 Mater. Sci. Semicond. Process 51 42

    Article  CAS  Google Scholar 

  16. Alshoaibi A, Saber O and Ahmed F 2021 Crystals 11 550

    Article  CAS  Google Scholar 

  17. Park K and Seo Gas D J 2003 Mater. Chem. Phys. 85 47

    Article  Google Scholar 

  18. Hjiri M, Bahanan F, Aida M S, El Mir L and Neri G 2020 J. Inorg. Organomet. Polym. Matter 30 4063

    Article  CAS  Google Scholar 

  19. Ji H, Zeng W and Li Y 2019 Nanoscale 11 22664

    Article  CAS  Google Scholar 

  20. Kim J-H, Mirzaei A, Kim H W and Kim S S 2018 Sens. Actuators B Chem. 267 597

    Article  CAS  Google Scholar 

  21. Gong H, Hu J Q, Wang J H, Ong C H and Zhu F R 2006 Sens. Actuators B Chem. 115 247

    Article  CAS  Google Scholar 

  22. Arsat R, Breedon M, Shafiei M, Spizziri P G, Gilje S and Kaner R B 2009 Chem. Phys. Lett. 467 344

    Article  CAS  Google Scholar 

  23. Wu Q-H, Li J and Son S-L 2010 Curr. NanoSci. 6 525

    Article  CAS  Google Scholar 

  24. Xue D, Wang P, Zhang Z and Wang Y 2019 Sens. Actuators B Chem. 296 126710

    Article  CAS  Google Scholar 

  25. Han L, Zhang S, Shang B, Zhang B, Wang Y and Bala H 2021 Front. Mater. Sci. 1 1

    Google Scholar 

  26. Maffeıs T G G, Owen G T, Penny M W, Starke T K H, Clark S A and Ferkel H 2002 Surf. Sci. 20 29

    Article  Google Scholar 

  27. Hamedani N F, Mahjoub A R, Khodadadi A A and Mortazavi Y 2011 Sens. Actuators B Chem. 156 737

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Binowesley.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Binowesley, R., Savarimuthu, K., Shankararajan, R. et al. Experimental performance evaluation of non-toxic metal oxide synthesized via solid-state reaction for room temperature-sensing applications. Bull Mater Sci 46, 144 (2023). https://doi.org/10.1007/s12034-023-02988-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-023-02988-2

Keywords

Navigation