Skip to main content
Log in

Oxidation modification of fluorinated graphite and its reaction mechanism

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

The Hummers method was employed in this study to oxidize fluorinated graphite. In addition, the pre- and post-chemical compositions and microstructure were characterized and analysed to explore the modification mechanism. Oxidized fluorinated graphite (OFG) with lamellar structure and variable oxygen content was obtained by oxidation method. Primarily, the oxidative modification under KMnO4 is that MnO3+ as Lewis acid would catalyse the activation of the carbon-fluorine bond, which then breaks to release a fluorine ion. Secondly, the unsaturated carbon bond would be oxidized, increasing carbon-oxygen bond content and producing some OFG nano fragments. The carbon-fluorine bond is gradually catalysed to react according to its activity as the KMnO4 dosage increases, while the unsaturated carbon bond is oxidized, leaving some isolated carbon-fluorine bonds with weak activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15

Similar content being viewed by others

References

  1. Akshay M, Narayanan T N, Lawrence B A, Paris C, Patrick N, Guanhui G et al 2013 Part. Part. Syst. Charact. 30 266

    Article  Google Scholar 

  2. Zhaofeng W, Jinqing W and Zhangpeng L 2012 Carbon 50 5403

    Article  Google Scholar 

  3. Kaiming H, Peiwei G, Jinqing W, Zhigang Y, Limin M and Shengrong Y 2015 Tribol. Lett. 60 1

    Article  Google Scholar 

  4. Peiwei G, Zhaofeng W, Zengjie F, Wei H, Zhigang Y, Jinqing W et al 2014 Carbon 72 176

    Article  Google Scholar 

  5. Bharathidasan T, Narayanan T N, Sathyanaryanan S and Sreejakumari S S 2015 Carbon 84 207

    Article  CAS  Google Scholar 

  6. Fan L, Weili W, Die G and Zhining X 2017 Anal. Methods 9 6645

    Article  Google Scholar 

  7. Kim Y H, Park J S, Choi Y R, Park S Y, Lee S Y, Sohn W et al 2017 J. Mater. Chem. A 5 19116

    Article  CAS  Google Scholar 

  8. Thiruppathi A R, Sidhureddy B, Keeler W and Chen A 2017 Electrochem. Commun. 76 42

    Article  CAS  Google Scholar 

  9. Radhakrishnan S, Sudeep P M, Park J H, Woellner C F, Maladonado K, Galvao D S et al 2017 Part. Part. Syst. Charact. 34 1700245

    Article  Google Scholar 

  10. Peiwei G, Shuaijie J, Jinqing W, Dujuan D, Fei W, Meng T et al 2018 Chem. Eng. J. 348 438

    Article  Google Scholar 

  11. Shijing Y, Jianqing Z, Yanchao Y, Shumei L, Zhenxun H, Zhigeng C et al 2013 RSC Adv. 3 21869

    Article  Google Scholar 

  12. Xiao C, Haohao H, Xia S, Shumei L and Jianqing Z 2017 RSC Adv. 7 1956

    Article  Google Scholar 

  13. Sudeep P M, Taha Tijerina J, Ajayan P M, Narayananc T N and Anantharaman M R 2014 RSC Adv. 4 24887

    Article  CAS  Google Scholar 

  14. Peiwei G, Zhigang Y, Wei H, Zhaofeng W, Kaiming H, Jinqing W et al 2015 Carbon 83 152

    Article  Google Scholar 

  15. Yang X, Jia X and Ji X 2015 RSC Adv. 5 9337

    Article  CAS  Google Scholar 

  16. Jankovský O, Šimek P, Sedmidubský D, Matějková S, Janoušek Z, Šembera F et al 2014 RSC Adv. 4 1378

    Article  Google Scholar 

  17. Mazánek V, Jankovský O, Luxa J, Sedmidubský D, Janoušek Z, Šembera F et al 2015 Nanoscale 7 13646

    Article  Google Scholar 

  18. Ji C, Yingru L, Liang H, Chun L and Gaoquan S 2015 Carbon 81 826

    Article  Google Scholar 

  19. FuGang Z, Gang Z, XinHua L, CongWu G, JinTu W, BaiLi L et al 2014 J. Mater. Chem. A 2 8782

    Article  Google Scholar 

  20. Plšek J, Drogowska K A, Valeš V, Ek Weis J and Kalbac M 2016 Chem.-Eur. J. 22 8990

    Article  Google Scholar 

  21. Chronopoulos D D, Bakandritsos A, Pykal M, Zbořil R and Otyepka M 2017 Appl. Mater. Today 9 60

    Article  Google Scholar 

  22. Cheng Z, Tao T, Wenjuan Y, Lei Z, Xiaoqin Z, Jun Y et al 2017 Anal. Chem. 89 4566

    Article  Google Scholar 

  23. Wenchuan L, Dazhou X, Xu W, Zaoming W, Yang L, Xiaojiao Z et al 2017 Phys. Chem. Chem. Phys. 19 19442

    Article  Google Scholar 

  24. Baoyin L, Taijun H, Zaoming W, Zheng C, Yang L, Teng C et al 2016 Phys. Chem. Chem. Phys. 18 505

    Google Scholar 

  25. Chuanbin S, Yiyu F, Yu L, Chengqun Q, Qingqing Z and Wei F 2014 Nanoscale 6 2634

    Article  Google Scholar 

  26. Liang Z, Shubin Y, Yun W, Yanli W, Licheng L and Xinliang F 2014 Adv. Mater. Interfaces 1 1

    Google Scholar 

  27. Qi C, Yan J, Danying Z, Jia S, Yinghong X and Jianfei C 2016 J. Nanopart. Res. 18 199

    Article  Google Scholar 

  28. Xuequan Z, Yiyu F, Dong H, Yu L and Wei F 2010 Carbon 48 3236

    Article  Google Scholar 

  29. Yu W, Yang Y and Graham N 2016 Chem. Eng. J. 298 234

    Article  CAS  Google Scholar 

  30. Murch G E and Thorn R J 1980 J. Phys. Chem. Solids 41 785

    Article  CAS  Google Scholar 

  31. Morgan W E, Van Wazer J R and Stec W J 1973 J. Am. Chem. Soc. 95 751

    Article  CAS  Google Scholar 

  32. Amii H and Uneyama K 2009 Chem. Rev. 109 2119

    Article  CAS  Google Scholar 

  33. Kiplinger J L, Richmond T G and Osterberg C E 1994 Chem. Rev. 94 373

    Article  CAS  Google Scholar 

  34. Storm M M, Johnsen R E and Norby P 2016 J. Solid State Chem. 240 49

    Article  CAS  Google Scholar 

  35. Chunhu C, Shin H, Jyunfu S, Changying Y, Yunwen L, Renhuai J et al 2017 Sci. Rep. 7 3908

    Article  Google Scholar 

  36. Stahl T, Klare H F T and Oestreich M 2013 ACS Catal. 3 1578

    Article  CAS  Google Scholar 

  37. Scott V J, Celenligil-Cetin R and Ozerov O V 2005 J. Am. Chem. Soc. 127 2852

    Article  CAS  Google Scholar 

  38. Kang J H, Kim T, Choi J, Park J, Kim Y S, Chang M S et al 2016 Chem. Mat. 28 756

    Article  CAS  Google Scholar 

  39. Dimiev A M and Tour J M 2014 ACS Nano 8 3060

    Article  CAS  Google Scholar 

  40. Eigler S, Dotzer C, Hof F, Bauer W and Hirsch A 2013 Chem.-Eur. J. 19 9490

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This research was supported by the Natural Science Basic Research Program of Shaanxi (Program No.2020JQ-488).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Li.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Bi, S., Yuan, X. et al. Oxidation modification of fluorinated graphite and its reaction mechanism. Bull Mater Sci 45, 99 (2022). https://doi.org/10.1007/s12034-022-02675-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-022-02675-8

Keywords

Navigation