Skip to main content
Log in

Influence of incorporation of carbon on the transparent conducting properties of CdO thin films

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Thin films of CdO incorporated with different amounts of carbon element have been deposited on glass substrates by using the vacuum thermal evaporation method aiming at improving their transparent conducting (TC) properties. The structural and opto-electrical properties of the host CdO films were systematically studied. X-ray diffraction and optical investigations confirmed the inclusion of C species in the CdO lattice. The obtained results were explained through the occupation of interstitial positions and structural vacancies of the host CdO lattice by C species. It was observed that the inclusion of carbon into the CdO lattice blue-shifted the optical band gap by \({\sim }5{-}7\)%, which was attributed to the Moss–Burstein (B–M) effect. The electrical studies showed that the carrier mobility increased steadily with the increase in the C% inclusion level, so that with 5 wt% it attained \({\sim }7.5\) times the carrier mobility in un-doped CdO. Therefore, the present study showed that the prepared host CdO–C films have controllable TC degenerate semiconducting properties, which could be required in different optoelectronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zhao Z, Morel D L and Ferekides C S 2002 Thin Solid Films 413 203

    Article  CAS  Google Scholar 

  2. Robertson J and Falabretti B 2011 in Handbook of transparent conductors D Ginley, H Hosono and DC Paine (eds) (Springer Science + Business Media, LLC) p 27

  3. Chandiramouli R and Jeyaprakash B G 2013 Solid State Sci. 16 102

    Article  CAS  Google Scholar 

  4. Carballeda-Galicia D M, Castanedo-Perez R, Jimenez-Sandoval O, Jimenez-Sandoval S, Torres-Delgado G and Zuniga-Romero C I 2000 Thin Solid Films 371 105

    Article  CAS  Google Scholar 

  5. Shannon R D 1976 Acta Crystallogr. Sect. Found. Crystallogr. A 32 751

  6. Dakhel A A 2011 J. Mater. Sci. 46 6925

    Article  CAS  Google Scholar 

  7. Gupta R K, Ghosh K, Patel R, Mishra S R and Kahol P K 2009 Curr. Appl. Phys. 9 673

    Article  Google Scholar 

  8. Saha B, Das S and Chattopadhyay K K 2007 Sol. Energy Mater. Sol. Cells 91 1692

    Article  CAS  Google Scholar 

  9. Murali K R, Kalaivanan A, Perumal S and Neelakanda Pillai N 2010 J. Alloy Compds. 503 350

    Article  CAS  Google Scholar 

  10. Gupta R K, Ghosh K, Patel R and Kahol P K 2009 Appl. Surf. Sci. 255 6252

    Article  CAS  Google Scholar 

  11. Pan H, Yi J B, Shen L, Wu R Q, Yang J H and Lin J Y et al 2007 Phys. Rev. Lett. 99 127201

    Article  CAS  Google Scholar 

  12. Subramanian M, Akaike Y, Hayashi Y, Tanemura M, Ebisu H and Ping D L S 2012 Phys. Status Solidi B 249 1254

    Article  CAS  Google Scholar 

  13. Lv H, Sang D D, Li H D, Du X B, Li D M and Zou G T 2010 Nanoscale Res. Lett. 5 620

    Article  CAS  Google Scholar 

  14. Xu C X, Sun X W, Dong Z L and Yu M B 2004 Appl. Phys. Lett. 85 3878

    Article  CAS  Google Scholar 

  15. Yao B D, Chan Y F and Wang N 2002 Appl. Phys. Lett. 81 757

    Article  CAS  Google Scholar 

  16. Powder Diffraction File, Joint Committee for Powder Diffraction Studies (JCPDS) file no. 05-0640

  17. McCusker L B, Von Dreele R B, Cox D E, Louer D and Scardi P 1999 J. Appl. Crystallogr. 32 36

    Article  CAS  Google Scholar 

  18. Zhou S, Xu Q, Potzger K, Talut G, Grötzschel R, Fassbender J et al 2008 Appl. Phys. Lett. 93 232507

    Article  Google Scholar 

  19. Akbar S 2017 Defect ferromagnetism in ZnO and SnO\(_{2}\) induced by non-magnetic dopants (Dissertation, University of Groningen north-west Germany (UGNWG)) p 41

  20. Hong W Q 1989 J. Phys. D: Appl. Phys. 22 1384

    Article  Google Scholar 

  21. Tauc J and Abelesn F (eds) 1969 Optical properties of solids (New York: North-Holland Publishing Co)

    Google Scholar 

  22. Kawamura K, Maekawa K, Yanagi H, Hirano M and Hosono H 2003 Thin Solid Films 445 182

    Article  CAS  Google Scholar 

  23. Naser G Y, Raja W N, Faris A S, Rahem Z J, Salih M A and Ahmed A H 2013 Energy Procedia 36 42

    Article  CAS  Google Scholar 

  24. Pankove J I 1975 Optical processes in semiconductors (NY: Dover Publications) p 36

  25. Anitha M, Tamilnayagam V, Anitha N, Amalraj L and Raj S G 2017 J. Mater. Sci.: Mater. Electron. 28 17297

    CAS  Google Scholar 

  26. Zhange S B, Wei S-H and Zunger A 2001 Phys. Rev. B 63 075205

    Article  Google Scholar 

  27. Akbar S, Hasanain S K, Abbas M, Ozcan S, Ali B and Shah S I 2011 Solid State Commun. 151 17

    Article  CAS  Google Scholar 

  28. Zhang F C, Cui H W, Ruan X X and Zhang W H 2014 J. Chem. Pharm. Res. 6 1658

    Google Scholar 

  29. Dakhel A A and Hamad H 2013 J. Solid State Chem. 208 14

    Article  CAS  Google Scholar 

  30. Velusamy P, Ramesh Babu R, Ramamurthi K, Dahlem M S and Elangovan E 2015 RSC Adv. 5 102741

    Article  CAS  Google Scholar 

  31. Hassanien A E, Hashem H M, Kamel G, Soltan S, Moustafa A M, Hammam M et al 2016 Int. J. Thin Films Sci. Technol. 5 55

    Google Scholar 

  32. Velusamy P, Ramesh Babu R, Ramamurthi K, Elangovan E, Viegas J, Dahlem M S et al 2016 Ceram. Int. 42 12675

    Article  CAS  Google Scholar 

  33. Lee D, Lee H, Ahn Y, Jeong Y, Lee D-Y and Lee Y 2013 Nanoscale 5 7750

    Article  CAS  Google Scholar 

  34. Mondal I, Kumar A, Rao K D M and Kulkarni G U 2018 J. Phys. Chem. Solids 118 232

    Article  CAS  Google Scholar 

  35. Singh A K, Kiruthika S, Mondal I and Kulkarni G U 2017 J. Mater. Chem. C 5 5917

    Article  CAS  Google Scholar 

  36. Gupta R, Rao K D M, Kiruthika S and Kulkarni G U 2013 ACS Appl. Mater. Interfaces 5 730

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author is grateful to Mrs Fatima H Qabeel from the SEM Laboratory/Central Labs/College of Science (UOB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A A Dakhel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dakhel, A.A. Influence of incorporation of carbon on the transparent conducting properties of CdO thin films. Bull Mater Sci 43, 134 (2020). https://doi.org/10.1007/s12034-020-02104-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-020-02104-8

Keywords

Navigation