Skip to main content
Log in

Electroanalytical characteristic of a novel biosensor designed with graphene–polymer-based quaternary and mesoporous nanomaterials

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Here, we propose the novel fabrication of graphene–polymer (GP)-based quaternary nanocomposite and mesoporous (MS) nanomaterials sensor [\(\hbox {NaLa}(\hbox {MoO}_{\mathrm {4}})_{\mathrm {2}}\)-GO-PPy (NLMG-PPy), CuZnSnSe-GO-PPy (CZSG-PPy) and \(\hbox {In}_{\mathrm {2}}\hbox {O}_{\mathrm {3}}\)-G-\(\hbox {SiO}_{\mathrm {2}}\,20{\%}\) (IGS20)] to address ignored challenges for Escherichia coli bacteria recognition in polluted samples. Synthesized samples were characterized through X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectrometry (EDX), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), Raman spectroscopy, nitrogen adsorption–desorption isotherms, X-ray photoelectron spectroscopy (XPS) and diffuse reflectance spectroscopy (DRS). The sensor could recognize an individual E. coli cell in \(1\,\upmu \hbox {l}\) sample volume within 50 s. Through a low identification point of an individual cell, the MS and GP sensor had an absolute scope of 1–100 CFU per \(\upmu \hbox {l}\) volume of sample (i.e. \(10^{\mathrm {3}}\)\(10^{\mathrm {5}}\,\hbox {CFU ml}^{\mathrm {-1}})\). The high thickness of negative charge on the surface of E. coli cells actively regulates the concentration of dominant part charge carriers in the mesoporous and G-polymer monolayer, permitting an ongoing check of E. coli concentration in a known sample. Our biosensor is simple and low-cost with great selectivity and fast identification was effectively shown for E. coli detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Abu-Ali H, Nabok A and Smith T J 2019 Anal. Bioanal. Chem. 411 7659

    CAS  Google Scholar 

  2. Acharya G, Chang C-L and Savran C 2006 J. Am. Chem. Soc.128 3862

    CAS  Google Scholar 

  3. Ahn J-H, Choi S-J, Han J-W, Park T J, Lee S Y and Choi Y-K 2010 Nano Lett.10 2934

    CAS  Google Scholar 

  4. Allen B L, Kichambare P D and Star A 2007 Adv. Mater.19 1439

    CAS  Google Scholar 

  5. Bulard E, Bouchet-Spinelli A, Chaud P, Roget A, Calemczuk R, Fort S et al 2015 Anal. Chem.87 1804

    CAS  Google Scholar 

  6. Cai B, Wang S, Huang L, Ning Y, Zhang Z and Zhang G-J 2014 ACS Nano8 2632

    CAS  Google Scholar 

  7. Campbell G A and Mutharasan R 2007 Environ. Sci. Technol.41 1668

    CAS  Google Scholar 

  8. Chang J, Mao S, Zhang Y, Cui S, Steeber D A and Chen J 2013a Biosens. Bioelectron. 42 186

    CAS  Google Scholar 

  9. Chang J, Mao S, Zhang Y, Cui S, Zhou G, Wu X et al 2013b Nanoscale5 3620

    CAS  Google Scholar 

  10. Chang J, Zhou G, Gao X, Mao S, Cui S, Ocola L E et al 2015 Sens. Bio-Sens. Res. 5 97

    Google Scholar 

  11. Chen J, Andler S M, Goddard J M, Nugen S R and Rotello V M 2017 Chem. Soc. Rev. 46 1272

    CAS  Google Scholar 

  12. Edberg S C, Rice E W, Karlin R J and Allen M J 2000 J. Appl. Microbiol. 88 106S

    Google Scholar 

  13. Geim A K and Novoselov K S 2007 Nat. Mater.6 183

    CAS  Google Scholar 

  14. Ghosh T, Biswas C, Oh J, Arabale G, Hwang T, Luong N D et al 2012 Chem. Mater.24 594

    CAS  Google Scholar 

  15. Hahn M A, Tabb J S and Krauss T D 2005 Anal. Chem.77 4861

    CAS  Google Scholar 

  16. Hassan A-R H A-A, de la Escosura-Muñiz A and Merkoçi A 2015 Biosens. Bioelectron. 67 511

    CAS  Google Scholar 

  17. He Q, Wu S, Yin Z and Zhang H 2012 Chem. Sci. 3 1764

    CAS  Google Scholar 

  18. Jazayeri M H, Amani H, Pourfatollah A A, Pazoki-Toroudi H and Sedighimoghaddam B 2016 Sens. Bio-Sens. Res. 9 (Supplement C) 17

    Google Scholar 

  19. Jung I, Diki D A, Piner R D and Ruoff R S 2008 Nano Lett.8 4283

    CAS  Google Scholar 

  20. Kang D-K, Ali M M, Zhang K, Huang S S, Peterson E, Digman M A et al 2014 Lab Chip5 5427

    CAS  Google Scholar 

  21. Kellici S, Acord J, Ball J, Reehal H S, Morgan D and Saha B 2014 RSC Adv. 4 14858

    CAS  Google Scholar 

  22. Kumar P V, Bardhan N M, Chen G-Y, Li Z, Belcher A M and Grossman J C 2016 Carbon100 (Supplement C) 90

    CAS  Google Scholar 

  23. Labib M, Zamay A S, Kolovskaya O S, Reshetneva I T, Zamay G S, Kibbee R J et al 2012 Anal. Chem.84 8966

    CAS  Google Scholar 

  24. Laczka O, Baldrich E, Muñoz F X and del Campo F J 2008 Anal. Chem.80 7239

    CAS  Google Scholar 

  25. Lee A, Mirrett S, Reller L B and Weinstein M P 2007 J. Clin. Microbiol.45 3546

    Google Scholar 

  26. Li F, Zhao Q, Wang C, Lu X, Li X-F and Le X C 2010 Anal. Chem.82 3399

    CAS  Google Scholar 

  27. Lim J Y, Yoon J W and Hovde C J 2010 J. Microbiol. Biotech.20 5

    CAS  Google Scholar 

  28. Marcano D C, Kosynkin D V, Berlin J M, Sinitskii A, Sun Z, Slesarev A et al 2010 ACS Nano4 4806

    CAS  Google Scholar 

  29. Martínez M T, Tseng Y-C, Ormategui N, Loinaz I, Eritja R and Bokor J 2009 Nano Lett.9 530

    Google Scholar 

  30. Miranda O R, Li X, Garcia-Gonzalez L, Zhu Z-J, Yan B, Bunz U H F et al 2011 J. Am. Chem. Soc.133 9650

    CAS  Google Scholar 

  31. Ohno Y, Maehashi K and Matsumoto K 2010 J. Am. Chem. Soc.132 18012

    CAS  Google Scholar 

  32. Pandey A, Gurbuz Y, Ozguz V, Niazi J H and Qureshi A 2017 Biosens. Bioelectron.91 225

    CAS  Google Scholar 

  33. Schedin F, Geim A K, Morozov S V, Hill E W, Blake P, Katsnelson M I et al 2007 Nat. Mater. 6 652

    CAS  Google Scholar 

  34. Schmid M, Shishkin M, Kresse G, Napetschnig E, Varga P, Kulawik M et al 2006 Phys. Rev. Lett.97 046101

    CAS  Google Scholar 

  35. Sepunaru L, Tschulik K, Batchelor-McAuley C, Gavish R and Compton R G 2015 Biomater. Sci. 3 816

    CAS  Google Scholar 

  36. Vanaja Sivapriya K, Russo Ashley J, Behl B, Banerjee I, Yankova M, Deshmukh Sachin D et al 2016 Cell165 1106

    Google Scholar 

  37. Wang Y, Knoll W and Dostalek J 2012 Anal. Chem.84 8345

    CAS  Google Scholar 

  38. Wu G, Meyyappan M and Lai K W C 2016 IEEE Nano22 25

    Google Scholar 

  39. Zhang Y, Tan Y-W, Stormer H L and Kim P 2005 Nature438 201

    CAS  Google Scholar 

  40. Zhao X, Hilliard L R, Mechery S J, Wang Y, Bagwe R P, Jin S et al 2004 Proc. Natl. Acad. Sci. USA101 15027

    CAS  Google Scholar 

  41. Zhou G, Chang J, Cui S, Pu H, Wen Z and Chen J 2014 ACS Appl. Mater. Interfaces6 19235

    CAS  Google Scholar 

  42. Zhu C, Yang G, Li H, Du D and Lin Y 2015 Anal. Chem. 87 230

    CAS  Google Scholar 

  43. Tan H L, Abdi F F and Ng Y H 2019 Chem. Soc. Rev.48 1255

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Won-Chun Oh.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (docx 5407 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fatema, K.N., Biswas, M.R.U.D., Bang, S.H. et al. Electroanalytical characteristic of a novel biosensor designed with graphene–polymer-based quaternary and mesoporous nanomaterials. Bull Mater Sci 43, 121 (2020). https://doi.org/10.1007/s12034-020-02090-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-020-02090-x

Keywords

Navigation