Skip to main content
Log in

Microstructure and transport properties of multiwall carbon nanotube-reinforced barium zirconium titanate ceramics

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

The influence of multiwall carbon nanotubes (MWCNTs) reinforced on microstructures and their transport properties on pure and cerium-substituted barium zirconium titanate (BZT) ceramics are reported in this study. The MWCNTs were prepared by a low-temperature sonochemical/hydrothermal method using dichloromethane as a carbon source. These MWCNTs were mixed with the as-prepared ceramic powders before heat treatment to obtain a reinforced product. The scanning electron micrographs reveal the successful incorporation of carbon nanotubes in BZT ceramics. The temperature-dependent direct current (dc)-resistivity was less for MWCNT-reinforced ceramics in contrast to that of pure ceramics. The decrease in the dc resistivity was due to the superior electrical behaviour of MWCNTs, which act as a connector between ceramic grains. The Seebeck coefficient of cerium-substituted-BZT improved after reinforcing the MWCNTs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Treacy M M J, Ebbesen T W and Gibson J M 1996 Nature 381 678

    Article  CAS  Google Scholar 

  2. Wei B Q, Vajtai R and Ajayan P M 2001 Appl. Phys. Lett. 79 1172

    Article  CAS  Google Scholar 

  3. Che J W, Cagin T and Goddard W A 2000 Nanotechnology 11 65

    Article  CAS  Google Scholar 

  4. Zhou W, Ooi Y H, Russo R, Papanek P, Luzzi D E and Fischer J E 2001 Chem. Phys. Lett. 350 6

    Article  CAS  Google Scholar 

  5. Hennings D and Schnell A 1982 J. Am. Ceram. Soc. 65 539

    Article  CAS  Google Scholar 

  6. Neirman S M 1988 J. Mater. Sci. 23 3973

    Article  CAS  Google Scholar 

  7. Ang Z Y C, Guo R and Bhalla A S 2002 J. Appl. Phys. 92 2655

    Article  Google Scholar 

  8. Halder S, Schneller T, Bottger U and Waser R 2005 Appl. Phys. A 81 25

    Article  CAS  Google Scholar 

  9. Moura F, Simoes A Z, Stojanovic B D, Zaghete M A, Longo E and Varela J A 2008 J. Alloys Compds. 462 129

    Article  CAS  Google Scholar 

  10. Salvetat J P, Kulik A J, Bonard J M, Briggs G A D, Stockli T and Metenier K 1999 Adv. Mater. 11 161

    Article  CAS  Google Scholar 

  11. Huang Q and Gao L 2004 J. Mater. Chem. 14 2536

    Article  CAS  Google Scholar 

  12. Martin M, Jaroslav S, Milan P, Monika M and Dusan G 2014 Ceram. Int. 40 1289

    Article  Google Scholar 

  13. Kaleem A and Wei P 2008 Ceram. Eng. Sci. Proc. 29 49

    Google Scholar 

  14. Kumari L, Zhang T, Du G H, Li W Z, Wang Q W, Datye A et al 2009 Ceram. Int. 35 1775

    Article  CAS  Google Scholar 

  15. Connor M T, Roy S, Ezquerra T A and Balta Calleja F J 1998 Phys. Rev. B 57 2286

    Article  CAS  Google Scholar 

  16. Sui-Lin S and Ji L 2006 J. Am. Ceram. Soc. 89 3533

    Article  Google Scholar 

  17. Fan Y, Wang L, Li J, Li J, Sun S, Chen F et al 2010 Carbon 48 1743

    Article  CAS  Google Scholar 

  18. Liu Z Y, Xiao B L, Wang W G and Ma Z Y 2013 Carbon 62 35

    Article  CAS  Google Scholar 

  19. Maa P, Siddiquia N A, Maromb G and Kim J 2010 Composites: A 41 1345

    Article  Google Scholar 

  20. Sagar R, Madolappa S, Sharanappa N and Raibagkar R L 2013 Mater. Chem. Phys. 140 119

    Article  CAS  Google Scholar 

  21. Sagar R and Raibagkar R L 2013 J. Alloys Compds. 549 206

    Article  CAS  Google Scholar 

  22. Sagar R, Hudge P, Madolappa S, Kumbharkhane A C and Raibagkar R L 2012 J. Alloys Compds. 537 197

    Article  CAS  Google Scholar 

  23. Sagar R, Madolappa S and Raibagkar R L 2012 Solid State Sci. 14 211

    Article  CAS  Google Scholar 

  24. Sagar R, Madolappa S and Raibagkar R L 2011 Solid State Commun. 151 1949

    Article  CAS  Google Scholar 

  25. Sagar R, Madolappa S and Raibagkar R L 2011 Ferroelectr. Lett. 38 128

    Article  CAS  Google Scholar 

  26. Sagar R, Madolappa S and Raibagkar R L 2011 Integr. Ferroelectr. 130 21

    Article  CAS  Google Scholar 

  27. Manafi S, Nadali H and Irani H R 2008 Mater. Lett. 62 4175

    Article  CAS  Google Scholar 

  28. Mazaheri M, Mari D, Hesabi Z R, Schaller R and Fantozzi G 2011 Compos. Sci. Technol. 72 939

    Article  Google Scholar 

Download references

Acknowledgements

Thanks for the Department of Science and Technology (DST) New Delhi, India, for granting INSPIRE Fellowship vide No. DST/INSPIRE Fellowship/2011 dated 29 June 2011 to one of the authors (RS). The author (RS) is also thankful to the Vision Group of Science and Technology (VGST), Dept. of IT, BT and S&T, Govt. of Karnataka, Bangalore for sanctioning research grant under CESEM project vide GRD No. 221 dated 24 January 2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R L Raibagkar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sagar, R., Raibagkar, R.L. Microstructure and transport properties of multiwall carbon nanotube-reinforced barium zirconium titanate ceramics. Bull Mater Sci 42, 159 (2019). https://doi.org/10.1007/s12034-019-1888-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-019-1888-z

Keywords

Navigation