Skip to main content
Log in

Influence of pyramid size on reflectivity of silicon surfaces textured using an alkaline etchant

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Surface texturing of p-type monocrystalline silicon (100) is well known as one of the best methods to reduce reflection losses and to increase light trapping and light absorption probability. Pyramid surface textures play a major role in reducing the reflectance of monocrystalline silicon surfaces. In this paper, the size of pyramids formed on the surface of p-type silicon substrates and by changing the etching characteristics during the texturing process of silicon were studied and evaluated. The pyramids that formed on the crystalline silicon surface formed light traps that led to increased light absorption efficiency. The pyramid size effects on the percent reflectivity were evaluated at normal incidence and an inverse relationship between the percent reflectivity and the pyramid size was found. The size of the pyramids was controlled by controlling the texturing process by changing the concentrations of potassium hydroxide (KOH) and isopropyl alcohol (IPA) and by controlling the etching process time. In this work, the optimized etching conditions were determined as a solution prepared with 20 wt% KOH and 3 wt% IPA for wet etching at a reaction temperature of \(80^{\circ }\hbox {C}\) and an etching time of 40 min. The lowest value for percent reflectivity of the patterned surfaces was 9.7% and it was achieved for pyramid bases close to \(4~\upmu \hbox {m}\) as measured at a wavelength of 650 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Svetoslav K, Martin S B and Martin S 2006 Appl. Phys. Lett. 88 203107

    Article  Google Scholar 

  2. Gangopadhyay U, Kim K, Dhungel S K, Basu P K and Yi J 2006 Renew. Energy 31 1906

    Article  CAS  Google Scholar 

  3. Sparber W, Schultz O, Biro D, Emanuel G, Preu R, Poddey A et al 2003 Proceedings of 3rd World Conference on Photovoltaic Energy Conversion (Osaka, Japan) p 1372

  4. Deng T, Chen J, Wu C N and Liu Z W 2013 ECS J. Solid State Sci. Technol. 2 419

    Article  Google Scholar 

  5. Xiao J, Wang L, Li X, Pi X and Yang D 2010 Appl. Surf. Sci. 257 472

    Article  CAS  Google Scholar 

  6. Rola K, Ptasinski K, Zakrzewski A and Zubel I 2014 Microsyst. Technol. 20 221

    Article  CAS  Google Scholar 

  7. Indermun S, Luttge R, Choonara Y E, Kumar P, du Toit L C, Modi G et al 2014 J. Control. Release 185 130

    Article  CAS  Google Scholar 

  8. Herwik S, Kisban S, Aarts A, Seidl K, Girardeau G, Benchenane K et al 2009 J. Micromech. Microeng. 19 074008

    Article  Google Scholar 

  9. Yan L, Arnab D, Ziyin L, Ian B C, Ajeet R I and Wong C P 2014 Nano Energy 3 127

    Article  Google Scholar 

  10. Sievert W, Zimmermann K U, Hartmann B, Klimm C, Jacob K and Angermann H 2009 Solid State Phenomena 145 223

    Article  CAS  Google Scholar 

  11. Baker-Finch S and McIntosh K 2011 Prog. Photovolt. Res. Appl. 19 406

    Article  CAS  Google Scholar 

  12. Hongjie L, Honglie S, Ye J, Chao G, Han Z and Jiren Y 2012 Appl. Surf. Sci. 258 5451

    Article  Google Scholar 

  13. Vazsonyi E, De Clercq K, Einhaus R, Van Kerschaver E, Said K, Poortmans J et al 1999 Energy Mater. Sol. Cells 57 179

    Article  CAS  Google Scholar 

  14. Jose N X 2013 PhD Thesis (Faculty of Sciences, Department of Physics, Konstanz)

  15. Keith R M and Luke P J 2009 J. Appl. Phys. 105 124520

    Article  Google Scholar 

  16. Park S H, Park J, You K H, Shin H C and Kim H O 2012 J. Occup. Health 55 120

  17. Zubel I and Kramkowska M 2001 Sens. Actuators A Phys. 93 138

    Article  CAS  Google Scholar 

  18. Drago R, Vrtacnik D, Aljancic U and Amon S 2003 J. Micromech. Microeng. 13 26

    Article  Google Scholar 

  19. Tiago S M, Pamakstys K, Luis M G, Graça M and Susana C 2015 Micromachines 6 1534

    Article  Google Scholar 

  20. Yaqin W, Ruizhi L, Junjun M and Shi-Qing M 2015 5th International Conference on Advanced Engineering Materials and Technology

  21. Jinsu Y, Junsik C, Kyumin H et al 2012 J. Korean Phys. Soc. 60 2071

    Article  Google Scholar 

  22. Park H, Kwon S, Lee J S et al 2009 Sol. Energy Mater. Sol. Cells 93 1773

    Article  CAS  Google Scholar 

  23. Charanpreet S, Vijay K, Kiran W and Sood S C 2012 Int. J. Comput. Sci. Commun. Tech. 5 974

    Google Scholar 

  24. Sarro P M, Bride D, Vlist W V and Bride S 2000 Sens. Actuators 85 340

    Article  CAS  Google Scholar 

  25. Singh P K, Kumar R, Lal M, Singh S N and Das B K 2001 Energy Mater. Sol. Cells 70 103

    Article  CAS  Google Scholar 

  26. Kyu M H and Jin S 2014 J. Korean Phys. Soc. 64 1132

    Article  Google Scholar 

  27. Al-Husseini A M and Lahlouh B 2017 J. Appl. Sci. 17 1812

    Google Scholar 

  28. Krzysztof P R and Zubel I 2013 Microsyst. Technol. 19 635

    Article  Google Scholar 

  29. Jan K, Heike A, Uta S and Bert S 2013 Energy Proc. 38 833

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ammar Mahmoud Al-Husseini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Husseini, A.M., Lahlouh, B. Influence of pyramid size on reflectivity of silicon surfaces textured using an alkaline etchant. Bull Mater Sci 42, 152 (2019). https://doi.org/10.1007/s12034-019-1848-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-019-1848-7

Keywords

Navigation