Skip to main content
Log in

A study of electromagnetic light propagation in a perovskite-based solar cell via a computational modelling approach

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Recently, there has been huge surge of scientific interest in organic–inorganic hybrid perovskite solar cells by virtue of their high efficiency and low cost fabrication procedures. Herein, we examine the light propagation inside a planar perovskite solar cell structure (\(\hbox {ITO}/\hbox {TiO}_{2}/\hbox {ZnO}/\hbox {CH}_{3}\hbox {NH}_{3}\hbox {PbI}_{3}/\hbox {Spiro-OMeTAD/Al}\)) by solving the Helmholtz equation in the finite element-frequency domain. The simulations were conducted using the COMSOL multiphysics finite element solver to carry out the two-dimensional optical modelling of simulated solar cells in the visible region. It has been observed that shorter wavelengths of light are significantly absorbed by the top region of the photoactive perovskite layer. Specifically, at a wavelength of 400 nm, the effective optical power penetration decays to zero at only 40% of the overall length of the photoactive layer. This observation has been attributed to the high absorption coefficient of the \(\hbox {CH}_{3}\hbox {NH}_{3}\hbox {PbI}_{3}\) perovskite material at shorter wavelengths. However, at longer wavelengths, the incident light propagates deeper into the photoactive layer, reaching 100% penetration. Based on the numerical computation, a maximum generation rate of \({\sim }3.43\times 10^{23}\,\hbox {m}^{3 }\hbox {s}^{-1}\) has been observed in the photoactive layer at a wavelength of 550 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Eshaghi A and Aghaei A A 2015 Bull. Mater. Sci. 38 1177

    Article  CAS  Google Scholar 

  2. Siwach B, Mohan D, Sharma S and Jyoti D 2017 Bull. Mater. Sci. 40 1371

    Article  CAS  Google Scholar 

  3. Alwin S, Ramasubbu V and Shajan X S 2018 Bull. Mater. Sci. 41 27

    Article  Google Scholar 

  4. Rakstys K, Paek S, Gao P et al 2017 J. Mater. Chem. A 5 7811

    Article  CAS  Google Scholar 

  5. Lin Q, Nagiri R C R, Burn P L and Meredith P 2017 Adv. Opt. Mater. 5 1600819

    Article  Google Scholar 

  6. Hutter E M, Hofman J J, Petrus M L et al 2017 Adv. Energy Mater. 7 1602349

    Article  Google Scholar 

  7. Jeon N J, Noh J H, Kim Y C, Yang W S, Ryu S and Seok S I 2014 Nat. Mater. 13 897

    Article  CAS  Google Scholar 

  8. Niu G, Guo X and Wang L 2015 J. Mater. Chem. A 3 8970

    Article  CAS  Google Scholar 

  9. Green M A, Jiang Y, Soufiani A M and Ho-Baillie A 2015J. Phys. Chem. Lett. 6 4774

    Article  CAS  Google Scholar 

  10. Grätzel M 2017 Acc. Chem. Res. 50 487

    Article  Google Scholar 

  11. Green M A, Ho-Baillie A and Snaith H J 2014 Nat. Photonics 8 506

    Article  CAS  Google Scholar 

  12. Kumar M S, Charanadhar N, Srikanth V V, Rao K B S and Raj B 2018 Bull. Mater. Sci. 41 62

    Article  Google Scholar 

  13. Sakai N, Wang Z, Burlakov V M, Lim J, McMeekin D, Pathak S et al 2017 Small 13 1602808

    Article  Google Scholar 

  14. Correa-Baena J-P, Abate A, Saliba M, Tress W, Jacobsson T J, Grätzel M et al 2017 Energy Environ. Sci. 10 710

    Article  CAS  Google Scholar 

  15. Kevin A B, Axel F P, Zhengshan Y, Mathieu B, Rongrong C, Jonathan P M et al 2017 Nat. Energy 2 17009

    Article  Google Scholar 

  16. Asghar M, Zhang J, Wang H and Lund P 2017 Renew. Sustain. Energy Rev. 77 131

    Article  CAS  Google Scholar 

  17. Han G, Zhang S, Boix P P, Wong L H, Sun L and Lien S-Y 2017 Prog. Mater. Sci. 87 246

    Article  CAS  Google Scholar 

  18. Kumar K R and Zeman M 2008 Bull. Mater. Sci. 31 737

    Article  Google Scholar 

  19. Yagi T, Uraoka Y and Fuyuki T 2006 Sol. Energy Mater. Sol. Cells 90 2647

    Article  CAS  Google Scholar 

  20. Bierhoff T, Wallrabenstein A, Himmler A, Griese E and Mrozynski G 2001 IEEE Trans. Magn. 37 3307

    Article  Google Scholar 

  21. Rim S-B, Zhao S, Scully S R, McGehee M D and Peumans P 2007 Appl. Phys. Lett. 91 243501

    Article  Google Scholar 

  22. Shaikh M, Acharya P and Papadakis A 2016 5th International Conference on Renewable Energy Sources & Energy Efficiency—New Challenges, p 1

  23. Parsons R, Tamang A, Jovanov V, Wagner V and Knipp D 2017 Appl. Sci. 7 427

    Article  Google Scholar 

  24. Semenikhin I, Zanuccoli M, Benzi M, Vyurkov V, Sangiorgi E and Fiegna C 2012 Opt. Quant. Electron. 44 149

    Article  CAS  Google Scholar 

  25. Lin Q, Armin A, Nagiri R C R, Burn P L and Meredith P 2015 Nat. Photonics 9 106

    Article  CAS  Google Scholar 

  26. Phillips L J, Rashed A M, Treharne R E, Kay J, Yates P, Mitrovic I Z et al 2016 Sol. Energy Mater. Sol. Cells 147 327

    Article  CAS  Google Scholar 

  27. Miyazaki K, Matsuki N, Shinno H, Fujioka H, Oshima M and Koinuma H 1999 Bull. Mater. Sci. 22 729

    Article  CAS  Google Scholar 

  28. Ong K G, Varghese O K, Mor G K, Shankar K and Grimes C A 2007 Sol. Energy Mater. Sol. Cells 91 250

    Article  CAS  Google Scholar 

  29. Fell A 2013 IEEE Trans. Electron. Devices 60 733

    Article  Google Scholar 

  30. Isabella O, Solntsev S, Caratelli D and Zeman M 2013 Prog. Photovolt. Res. Appl. 21 94

    Article  CAS  Google Scholar 

  31. Thiele E S and French R H 1998 J. Am. Ceram. Soc. 81 469

    Article  CAS  Google Scholar 

  32. Ziang X, Shifeng L, Laixiang Q, Shuping P, Wei W, Yu Y et al 2015 Opt. Mater. Express 5 29

    Article  Google Scholar 

  33. Choi J J, Yang X, Norman Z M, Billinge S J and Owen J S 2013 Nano Lett. 14 127

    Article  Google Scholar 

  34. Grätzel M 2014 Nat. Mater. 13 838

    Article  Google Scholar 

  35. Hossain M F, Faisal M and Okada H 2016 2nd International Conference on Electrical, Computer & Telecommunication Engineering (ICECTE), p 1

  36. Lin Q, Armin A, Nagiri R C R, Burn P L and Meredith P 2015 Nat. Photonics 9 106

    Article  CAS  Google Scholar 

  37. Liu D and Kelly T L 2014 Nat. Photonics 8 133

    Article  CAS  Google Scholar 

  38. Lin A and Phillips J 2008 Sol. Energy Mater. Sol. Cells 92 1689

    Article  CAS  Google Scholar 

  39. Yu L, Misra S, Wang J, Qian S, Foldyna M, Xu J et al 2014 Sci. Rep. 4 4357

    Article  Google Scholar 

  40. Muchuweni E, Sathiaraj T and Nyakotyo H 2017 Heliyon 3 e00285

    Article  CAS  Google Scholar 

  41. König T A, Ledin P A, Kerszulis J, Mahmoud M A, El-Sayed M A, Reynolds J R et al 2014 ACS Nano 8 6182

    Article  Google Scholar 

  42. Filipič M, Löper P, Niesen B, De Wolf S, Krč J, Ballif C et al 2015 Opt. Express 23 A263

    Article  Google Scholar 

  43. Phillips L J, Rashed A M, Treharne R E, Kay J, Yates P, Mitrovic I Z et al 2015 Data Brief 5 926

    Article  Google Scholar 

  44. Gunaicha P P 2012 MS Thesis (Ohio: The University of Toledo)

  45. Sze S M and Ng K K 2006 Physics of semiconductor devices (USA: John Wiley & Sons)

    Book  Google Scholar 

  46. Hoppe H, Arnold N, Sariciftci N and Meissner D 2003 Sol. Energy Mater. Sol. Cells 80 105

    Article  CAS  Google Scholar 

  47. Malik H A, Aziz F, Asif M, Raza E, Najeeb M A, Ahmad Z et al 2016 J. Lumin. 180 209

    Article  CAS  Google Scholar 

  48. Zafar Q, Najeeb M A, Ahmad Z and Sulaiman K 2015 J. Nanopart. Res. 17 372

    Article  Google Scholar 

  49. Ahmad Z, Abdullah S M, Zafar Q and Sulaiman K 2014 J. Mod. Opt. 61 1730

    Article  CAS  Google Scholar 

  50. Rajib M R, Rana S M, Hasan M R, Amin R, Iqbal M S, Anik M R et al 2014 Int. J. Eng. Res. Technol. 3 1

    Google Scholar 

Download references

Acknowledgements

We are highly grateful to the Erasmus Mundus Intact (EM-INTACT) mobility program for providing PhD fellowship for M N Shaikh.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Q Zafar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaikh, M.N., Zafar, Q. & Papadakis, A. A study of electromagnetic light propagation in a perovskite-based solar cell via a computational modelling approach. Bull Mater Sci 42, 169 (2019). https://doi.org/10.1007/s12034-019-1837-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-019-1837-x

Keywords

Navigation