Skip to main content
Log in

Spectroscopic characterization of \(\hbox {Er}^{3+}\) doped lead zinc phosphate glass via Judd–Ofelt analysis

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Lead zinc phosphate (LZP) glass doped with 0.6% \(\hbox {Er}^{3+}\) is prepared by a conventional melt quenching technique. Judd–Ofelt (JO) analysis is carried out with an absorption spectrum of the as-prepared glass generating the set of JO parameters: \(\varOmega _2 =2.75\times 10^{-20}\, \hbox {cm}^{-2}\), \(\varOmega _4 =2.71\times 10^{-20}\, \hbox {cm}^{-2}\) and \(\varOmega _6 =0.44\times 10^{-20}\, \hbox {cm}^{-2}\). The magnitude of the spectroscopic quality factor \((\chi _{\mathrm{p}} )\) defined by \(\varOmega _4 /\varOmega _6 \) obtained in our sample turns out to be 6.16 which is 2–10 times larger than that of other \(\hbox {Er}^{3+}\) doped glasses. The lifetime of \(^{4}\hbox {I}_{13/2}\) and \(^{4}\hbox {I}_{11/2}\) levels estimated via the JO parameters is found to provide superior values of 7.25 and 5.51 ms, respectively. The elevated value of \(\varOmega _4 /\varOmega _6 \) along with the estimated 100% luminescence branching ratio of \(^{4}\hbox {I}_{13/2} \rightarrow ^{4}\hbox {I}_{15/2}\) transition implies that \(\hbox {Er}^{3+}\) doped LZP can be a promising material as a laser active medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Weber M J 1990 J. Non-Cryst. Solids 123 208

    Article  CAS  Google Scholar 

  2. Vega M, Alemany P, Martin I R and Llanos J 2017 RSC Adv. 7 10529

    Article  CAS  Google Scholar 

  3. Amjad R J, Sahar M R, Ghoshal S K, Dousti M R, Riaz S and Tahir B A 2012 J. Lumin. 132 2714

    Article  CAS  Google Scholar 

  4. Huang F, Liu X, Hu L and Chen D 2014 Sci. Rep. 4 5053

    Article  CAS  Google Scholar 

  5. Terashima K, Tamura S, Kim S H and Yoko T 1997 J. Am. Ceram. Soc. 80 2903

    Article  CAS  Google Scholar 

  6. Ratnakaram Y C, Reddy Prasad V, Babu S and Ravi Kanth Kumar V V 2016 Bull. Mater. Sci. 39 1065

    Article  CAS  Google Scholar 

  7. Prasad V R, Damodaraiah S and Ratnakaram Y C 2017 AIP Conf. Proc. 1832 070007

    Article  Google Scholar 

  8. Amjad R J, Sahar M R, Ghoshal S K, Dousti M R and Arifin R 2013 Opt. Mater. 35 1103

    Article  CAS  Google Scholar 

  9. Dousti M R, Ghoshal S K, Amjad R J, Sahar M R, Nawaz F and Arifin R 2013 Optics Comm. 300 204

    Article  CAS  Google Scholar 

  10. Dousti M R and Amjad R J 2015 J. Non-Cryst. Solids 420 21

    Article  Google Scholar 

  11. Anigrahawati P, Sahar M R, Rohani M S and Ghoshal S K 2015 Adv. Mater. Res. 1107 420

    Article  Google Scholar 

  12. Aboud H 2016 J. Nanostruct. 61 79

    Google Scholar 

  13. Judd B R 1962 Phys. Rev. 127 750

    Article  CAS  Google Scholar 

  14. Ofelt G S 1962 J. Chem. Phys. 37 511

    Article  CAS  Google Scholar 

  15. Chowdhury S, Mandal P and Ghosh S 2019 Mater. Sci. Eng. B 240 116

  16. Dimitrov V and Komatsu T 1999 J. Non-Cryst. Solids 249 160

    Article  CAS  Google Scholar 

  17. Hehlen M P, Brik M G and Krämer K W 2013 J. Lumin. 136 221

    Article  CAS  Google Scholar 

  18. Walsh B M 2006 in Advances in spectroscopy for lasers and sensing B Di Bartolo and O Forte (eds) (Dordrecht: Springer) p 403

  19. Görller-Walrand C and Binnemans K 1998 Handbook on the physics and chemistry of rare earths 25 101

    Article  Google Scholar 

  20. Krupke W 1974 IEEE J. Quantum Electron. 10 450

    Article  CAS  Google Scholar 

  21. Yao G, Lin C, Meng Q, May P S and Berry M T 2015 J. Lumin160 276

    Article  CAS  Google Scholar 

  22. Carnall W T, Fields P R and Rajnak K 1968 J. Chem. Phys. 49 4424

    Article  CAS  Google Scholar 

  23. Carnall W T, Fields P R and Rajnak K 1968 J. Chem. Phys. 49 4412

    Article  CAS  Google Scholar 

  24. Fan H U, Xinran L I, Rongrong C H, Yanzhou L I, Yaohua M A, Maalej R et al 2017 J. Rare Earths 35 964

    Article  Google Scholar 

  25. Walsh B M, Barnes N P and Di Bartolo B 1998 J. Appl. Phys. 83 2772

    Article  CAS  Google Scholar 

  26. Zou X and Izumitani T 1993 J. Non-Cryst. Solids 162 68

    Article  CAS  Google Scholar 

  27. Kamma I, Mbila M, Gall K E and Reddy B R 2013 Opt. Mater. Express 3 884

    Article  CAS  Google Scholar 

  28. Czaja M, Bodył S, Gabryś-Pisarska J and Mazurak Z 2009 Opt. Mater31 1898

    Article  CAS  Google Scholar 

  29. Chen H, Liu Y H, Zhou Y F and Jiang Z H 2005 J. Alloys Compd. 397 286

    Article  CAS  Google Scholar 

  30. Tkachuk A M, Razumova I K, Mirzaeva A A, Malyshev A V and Gapontsev V P 2002 Opt. Spectrosc. 92 67

    Article  CAS  Google Scholar 

  31. Greenberg E, Katz G, Reisfeld R, Spector N, Marshall R C, Bendow B et al 1982 J. Chem. Phys. 77 4797

    Article  CAS  Google Scholar 

  32. Zhao Y W, Gong X H, Chen Y J, Huang L X, Lin Y F, Zhang G et al 2007 Appl. Phys. B 88 51

    Article  CAS  Google Scholar 

  33. Sardar D K, Bradley W M, Perez J J, Gruber J B, Zandi B, Hutchinson J A et al 2003 J. Appl. Phys. 93 2602

    Article  CAS  Google Scholar 

  34. Jørgensen C K and Reisfeld R 1983 J. Less-Common Met. 93 107

    Article  Google Scholar 

  35. Zhang Y, Xu J and Lu B 2014 J. Alloy Compd. 582 635

    Article  CAS  Google Scholar 

  36. Nageno Y, Takebe H and Morinaga K 1993 J. Am. Ceram. Soc. 76 3081

    Article  CAS  Google Scholar 

  37. Kaminskii A A 1981 Laser Crystals. Springer series in Opt. Sciences 14 170

  38. Carnall W T, Crosswhite H and Crosswhite H M 1978 Argonne Nat. Lab. Spec. Rep. No. ANL-78-XX-95

  39. Ezza S 2015 PhD Thesis (Faculty of Science, Universiti Teknologi Malaysia)

  40. Basavapoornima C, Linganna K, Kesavulu C R, Ju S, Kim B H, Han W T et al 2017 J. Alloys Compd. 699 959

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thankfully acknowledge DST, Government of India (Grant No. SR/S2/CMP-0040/2010) for financially supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhankar Ghosh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandal, P., Chowdhury, S. & Ghosh, S. Spectroscopic characterization of \(\hbox {Er}^{3+}\) doped lead zinc phosphate glass via Judd–Ofelt analysis. Bull Mater Sci 42, 99 (2019). https://doi.org/10.1007/s12034-019-1806-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-019-1806-4

Keywords

Navigation