Skip to main content
Log in

Prediction of magnetic and magnetocaloric properties in \(\hbox {Pr}_{0.8-x}\hbox {Bi}_{x}\hbox {Sr}_{0.2}\hbox {MnO}_{3}\) (\(x=0\), 0.05 and 0.1) manganites

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

In this work, we have investigated the magnetic and magnetocaloric properties of \(\hbox {Pr}_{0.8-x}\hbox {Bi}_{x}\hbox {Sr}_{0.2}\hbox {MnO}_{3}\) (\(x=0\), 0.05 and 0.1) polycrystalline manganites prepared by sol–gel route on the basis of a phenomenological model. Temperature dependence of magnetization indicates that all our samples exhibit a second order paramagnetic to ferromagnetic transition with a decrease in temperature. A correlation between experimental results and theoretical analysis based on a phenomenological model is investigated. The magnetic and magnetocaloric measurements are well simulated by this model. Under a magnetic applied field of 5 T, the theoretical absolute values of the maximum of magnetic entropy change \(\Delta S_{{\mathrm{Max}}}\) are found to be equal to 5.33, 3.33 and \(2.97\,\hbox {J}\,\hbox {kg}^{-1}\,\hbox {K}^{-1}\) for \(x=0\), 0.05 and 0.1 respectively. The relative cooling power and the specific heat capacity values are also estimated. The predicted results permit us to conclude that our compounds may be promising candidates for magnetic refrigeration at low temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Phong P T, Dang N V, Nam P H, Phong L T H, Manh D H, An N M et al 2016 J. Alloys Compd. 683 67

    Article  CAS  Google Scholar 

  2. Mira J, Rivas J, Hueso L E, Rivadulla F and Lopez Quintela M A 2002 J. Appl. Phys. 91 8903

    Article  CAS  Google Scholar 

  3. Wang Z, Xu Q, Sun J, Pan J and Zhang H 2011 Phys. B 406 1436

    Article  CAS  Google Scholar 

  4. Gschneidner Jr K A, Pecharsky V K and Tsokol A O 2005 Rep. Prog. Phys. 68 1479

    Article  CAS  Google Scholar 

  5. Zheng X, Zhang B, Li Y, Wu H, Zhang H, Zhang J et al 2016 J. Alloys Compd. 680 617

    Article  CAS  Google Scholar 

  6. Pecharsky V K and Gschneidner K A 1997 Phys. Rev. Lett. 78 4494

    Article  CAS  Google Scholar 

  7. Hu F-X, Shen B-G, Sun J-R, Cheng Z-H, Rao G-H and Zhang X-X 2001 Appl. Phys. Lett. 78 3675

    Article  CAS  Google Scholar 

  8. Zheng X Q, Shao X P, Chen J, Xu Z Y, Hu F X, Sun J R et al 2013 Appl. Phys. Lett. 102 022421

    Article  Google Scholar 

  9. Phan M H and Yu S C 2007 J. Magn. Magn. Mater. 308 325

    Article  CAS  Google Scholar 

  10. Ben Jazia Kharrat A, Hlil E K and Boujelben W 2018 J. Alloys Compd. 739 101

    Article  CAS  Google Scholar 

  11. Krichene A, Bourouina M, Venkateshwarlu D, Solanki P S, Rayaprol S, Ganesan V et al 2016 J. Magn. Magn. Mater. 408 116

    Article  CAS  Google Scholar 

  12. Krichene A, Solanki P S, Rayaprol S, Ganesan V, Boujelben W and Kuberkar D G 2015 Ceram. Int. 41 2637

    Article  CAS  Google Scholar 

  13. Hamad M A 2014 Phase Transit. 87 460

    Article  CAS  Google Scholar 

  14. Hamad M A 2015 J. Adv. Ceram. 206 210

    Google Scholar 

  15. Gharsallah H, Bejar M, Dhahri E, Hlil E K and Bessais L 2016 Ceram. Int. 42 697

    Article  CAS  Google Scholar 

  16. Hsini M, Hcini S and Zemni S 2018 J. Magn. Magn. Mater. 466 368

    Article  CAS  Google Scholar 

  17. Bingham N S, Phan M H, Srikanth H, Torija M A and Leighton C 2009 J. Appl. Phys. 106 023909

    Article  Google Scholar 

  18. Ben Jazia Kharrat A, Moussa S, Moutiaa N, Khirouni K and Boujelben W 2017 J. Alloys Compd. 724 389

    Article  CAS  Google Scholar 

  19. Hamad M A 2014 Phase Transit. 85 460

    Article  Google Scholar 

  20. Hamad M A 2012 Mater. Lett. 82 181

    Article  CAS  Google Scholar 

  21. Hamad M A 2012 Phase Transit. 85 106

    Article  CAS  Google Scholar 

  22. Zhong W, Chen W, Ding W P, Zhang N, Hu A, Du Y W and Yan Q J 1998 Eur. Phys. J. B 3 169

    Article  CAS  Google Scholar 

  23. Dhahri A H, Jemmali M, Dhahri E and Valente M A 2015 J. Alloys Compd. 638 221

    Article  CAS  Google Scholar 

  24. Zener C 1951 Phys. Rev. 81 440

    Article  CAS  Google Scholar 

  25. Guo Z B, Du Y W, Zhu J S, Huang H, Ding W P and Feng D 1997 Phys. Rev. Lett. 78 1142

    Article  CAS  Google Scholar 

  26. Reis M S, Amaral V S, Araújo J P, Tavares P B, Gomes A M and Oliveira I S 2005 Phys. Rev. B 71 144413

    Article  Google Scholar 

  27. Dong Q Y, Zhang H W, Sun J R, Shen B G and Franco V 2008 J. Appl. Phys. 103 116101

    Article  Google Scholar 

  28. Franco V, Blázquez J S and Conde A 2006 Appl. Phys. Lett. 100 064307

    Google Scholar 

  29. Franco V and Conde A 2010 Int. J. Refrig. 33 465

    Article  CAS  Google Scholar 

  30. Franco V, Conde A, Kuz’min M D and Romero-Enrique J M 2009 J. Appl. Phys. 105 917

    Article  Google Scholar 

  31. Widom B 1965 J. Chem. Phys. 43 3898

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Tunisian Ministry of Higher Education and Scientific Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Ben Jazia Kharrat.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kharrat, A.B.J., Hlil, E.K. & Boujelben, W. Prediction of magnetic and magnetocaloric properties in \(\hbox {Pr}_{0.8-x}\hbox {Bi}_{x}\hbox {Sr}_{0.2}\hbox {MnO}_{3}\) (\(x=0\), 0.05 and 0.1) manganites. Bull Mater Sci 42, 62 (2019). https://doi.org/10.1007/s12034-019-1739-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-019-1739-y

Keywords

Navigation