Skip to main content

Advertisement

Log in

Potential Impact of Climate Change-Induced Alterations on Pyroptotic Cell Death in Animal Cells: A Review

  • Review Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Climate change-induced alterations in temperature variation, ozone exposure, water salinity and acidification, and hypoxia might influence immunity and thus survival in diverse groups of animals from fish to mammals. Pyroptosis is a type of lytic pro-inflammatory programmed cell death, which participates in the innate immune response, and is involved in multiple diseases characterized by inflammation and cell death, mostly studied in human cells. Diverse extrinsic factors can induce pyroptosis, leading to the extracellular release of pro-inflammatory molecules such as IL-18. Climate change-related factors, either directly or indirectly, can also promote animal cell death via different regulated mechanisms, impacting organismal fitness. However, pyroptosis has been relatively less studied in this context compared to another cell death process, apoptosis. This review covers previous research pointing to the potential impact of climate change, through various abiotic stressors, on pyroptotic cell death in different animal cells in various contexts. It was proposed that temperature, ozone exposure, water salinity, water acidification and hypoxia have the potential to induce pyroptotic cell death in animal cells and promote inflammation, and that these pyroptotic events should be better understood to be able to mitigate the adverse effects of climate change on animal physiology and health. This is of high importance considering the increasing frequency, intensity and duration of climate-based changes in these environmental parameters, and the critical function of pyroptosis in immune responses of animals and in their predisposition to multiple diseases including cancer. Furthermore, the need for further mechanistic studies showing the more direct impact of climate change-induced environmental alterations on pyroptotic cell death in animals at the organismal level was highlighted. A complete picture of the association between climate change and pyroptosis in animals will be also highly valuable in terms of ecological and clinical applications, and it requires an interdisciplinary approach.

Significance

Climate change-induced alterations might influence animal physiology. Pyroptosis is a form of cell death with pro-inflammatory characteristics. Previous research suggests that temperature variation, ozone exposure, water salinity and acidification, and hypoxia might have the potential to contribute to pyroptotic cell death in certain cell types and contexts. Climate change-induced pyroptotic cell death should be better understood to be able to mitigate the adverse effects of climate change on animal health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Availability of data and materials

No data associated in the manuscript.

References

  1. Mills, B. J. W., et al. (2019). Modelling the long-term carbon cycle, atmospheric CO2, and Earth surface temperature from late Neoproterozoic to present day. Gondwana Research, 67, 172–186.

    Article  CAS  Google Scholar 

  2. Pacheco, S. E., Guidos-Fogelbach, G., Annesi-Maesano, I., Pawankar, R., D’Amato, G., Latour-Staffeld, P., Urrutia-Pereira, M., Kesic, M. J., Hernandez, M. L., American Academy of Allergy, Asthma & Immunology Environmental Exposures and Respiratory Health Committee. (2021). Climate change and global issues in allergy and immunology. Journal of Allergy Clinical Immunology, 148(6), 1366–1377. https://doi.org/10.1016/j.jaci.2021.10.011

    Article  PubMed  Google Scholar 

  3. Hausfather, Z., Cowtan, K., Clarke, D. C., Jacobs, P., Richardson, M., & Rohde, R. (2017). Assessing recent warming using instrumentally homogeneous sea surface temperature records. Science Advances, 3(1), e1601207.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Chan, A. W., Hon, K. L., Leung, T. F., Ho, M. H., Rosa Duque, J. S., & Lee, T. H. (2018). The effects of global warming on allergic diseases. Hong Kong Medicine Journal, 24(3), 277–284. https://doi.org/10.12809/hkmj177046

    Article  CAS  Google Scholar 

  5. Church, J. A., & White, N. J. (2006) A 20th century acceleration in global sea‐level rise. Geophysical Research Letters, 33(1).

  6. Kwok, R., & Rothrock, D. A. (2009). Decline in Arctic sea ice thickness from submarine and ICESat records: 1958–2008. Geophysical Research Letters, 36, L15501.

    Article  Google Scholar 

  7. Zemp, M., Frey, H., Gärtner-Roer, I., Nussbaumer, S. U., Hoelzle, M., Paul, F., & Vincent, C. (2015). Historically unprecedented global glacier decline in the early 21st century. Journal of Glaciology, 61(228), 745–762.

    Article  Google Scholar 

  8. Kunkel, K. E., Robinson, D. A., Champion, S., Yin, X., Estilow, T., & Frankson, R. M. (2016). Trends and extremes in Northern Hemisphere snow characteristics. Current Climate Change Reports, 2, 65–73.

    Article  Google Scholar 

  9. Kunkel, K. E., Karl, T. R., Brooks, H., Kossin, J., Lawrimore, J. H., Arndt, D., & Wuebbles, D. (2013). Monitoring and understanding trends in extreme storms: state of knowledge. BAMS, 94(4), 499–514.

    Article  Google Scholar 

  10. Simpson, M. J. (2011). Global climate change impacts in the United States. Journal of Environmental Quality, 40, 279.

    Article  CAS  Google Scholar 

  11. Layton, K. K. S., Snelgrove, P. V. R., Dempson, J. B., et al. (2021). Genomic evidence of past and future climate-linked loss in a migratory Arctic fish. Nature Clinical Practice Endocrinology & Metabolism, 11, 158–165. https://doi.org/10.1038/s41558-020-00959-7

    Article  Google Scholar 

  12. Moon, T., Ahlstrøm, A., Goelzer, H., Lipscomb, W., & Nowicki, S. (2018). Rising oceans guaranteed: Arctic land ice loss and sea level rise. Current Climate Change Report, 4, 211–222.

    Article  Google Scholar 

  13. Shepherd, T. G. (2016). Effects of a warming arctic. Science, 353, 989–990.

    Article  CAS  PubMed  Google Scholar 

  14. Sévellec, F., Fedorov, A. V., & Liu, W. (2017). Arctic sea-ice decline weakens the Atlantic meridional overturning circulation. Nature Climate Change, 7, 604–610.

    Article  Google Scholar 

  15. Alofs, K. M., Jackson, D. A., & Lester, N. P. (2014). Ontario freshwater fishes demonstrate differing range-boundary shifts in a warming climate. Diversity and Distributions, 20, 123–136.

    Article  Google Scholar 

  16. Lynch, A. J., et al. (2016). Climate change effects on North American inland fish populations and assemblages. Fisheries, 41, 346–361.

    Article  Google Scholar 

  17. Poesch, M. S., Chavarie, L., Chu, C., Pandit, S. N., & Tonn, W. (2016). Climate change impacts on freshwater fishes: A Canadian perspective. Fisheries, 41, 385–391.

    Article  Google Scholar 

  18. Oh, J. H., Kug, J. S., An, S. I., et al. (2024). Emergent climate change patterns originating from deep ocean warming in climate mitigation scenarios. Nature Clinical Practice Endocrinology & Metabolism, 14, 260–266. https://doi.org/10.1038/s41558-024-01928-0

    Article  Google Scholar 

  19. von Schuckmann, K., et al. (2020). Heat stored in the Earth system: Where does the energy go? Earth System Science Data, 12, 2013–2041.

    Article  Google Scholar 

  20. Gattuso, J. P., & Jiao, N. (2022). Ocean-based climate actions recommended by academicians from Europe and China. Science China Earth Sciences, 65, 1612–1614.

    Article  Google Scholar 

  21. Feary, D. A., et al. (2013). Latitudinal shift in coral reef fishes: Why some species do other do not shift. Fish and Fisheries (Oxford), 15, 593–615.

    Article  Google Scholar 

  22. Karvonen, A., Rintamäki, P., Jokela, J., & Valtonen, E. T. (2010). Increasing water temperature and disease risks in aquatic systems: Climate change increases the risk of some, but not all, diseases. International Journal for Parasitology, 40(13), 1483–1488.

    Article  PubMed  Google Scholar 

  23. Macnab, V., & Barber, I. (2012). Some (worms) like it hot: Fish parasites grow faster in warmer water, and alter host thermal preferences. Global Change Biology, 18(5), 1540–1548.

    Article  Google Scholar 

  24. Marcogliese, D. J. (2016). The distribution and abundance of parasites in aquatic ecosystems in a changing climate: More than just temperature. Integrative and Comparative Biology, 56(4), 611–619. https://doi.org/10.1093/icb/icw036. Epub 2016 Jun 1. PMID: 27252206.

    Article  PubMed  Google Scholar 

  25. da Costa, J. C., & Val, A. L. (2020). Extreme climate scenario and parasitism affect the Amazonian fish Colossoma macropomum. Science of the Total Environment, 15(726), 138628. https://doi.org/10.1016/j.scitotenv.2020.138628. Epub 2020 Apr 13. PMID: 32315861.

    Article  CAS  Google Scholar 

  26. Filipe, J. F., Herrera, V., Curone, G., Vigo, D., & Riva, F. (2020). Floods, hurricanes, and other catastrophes: A challenge for the immune system of livestock and other animals. Frontiers in Veterinary Science, 7, 16. https://doi.org/10.3389/fvets.2020.00016. PMID: 32083100; PMCID: PMC7004950.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Scharsack, J. P., & Franke, F. (2022). Temperature effects on teleost immunity in the light of climate change. Journal of Fish Biology, 101(4), 780–796. https://doi.org/10.1111/jfb.15163. Epub 2022 Sep 7. PMID: 35833710.

    Article  PubMed  Google Scholar 

  28. Dittmar, J., Janssen, H., Kuske, A., Kurtz, J., & Scharsack, J. P. (2014). Heat and immunity: An experimental heat wave alters immune functions in three-spined sticklebacks (Gasterosteus aculeatus). Journal of Animal Ecology, 83(4), 744–757.

    Article  PubMed  Google Scholar 

  29. Lei, S. U., & Zheng-tao, G. U. (2017). The mechanism of heat-induced damage of endothelial cells and its effect on vital organs. Jie Fang Jun Yi Xue Za Zhi., 42(4), 271.

    Google Scholar 

  30. Bouchama, A., Abuyassin, B., Lehe, C., Laitano, O., Jay, O., O’Connor, F. G., & Leon, L. R. (2022). Classic and exertional heatstroke. Nature Reviews Disease Primers, 8(1), 8. https://doi.org/10.1038/s41572-021-00334-6. PMID: 35115565.

    Article  PubMed  Google Scholar 

  31. Tsai, H. Y., Hsu, Y. J., Lu, C. Y., Tsai, M. C., Hung, W. C., Chen, P. C., & Tsai, S. H. (2021). Pharmacological activation of aldehyde dehydrogenase 2 protects against heatstroke-induced acute lung injury by modulating oxidative stress and endothelial dysfunction. Frontiers in Immunology, 12, 740562. https://doi.org/10.3389/fimmu.2021.740562. PMID: 34764958; PMCID: PMC8576434.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang, F., Zhang, Y., Li, J., Xia, H., Zhang, D., & Yao, S. (2022). The pathogenesis and therapeutic strategies of heat stroke-induced liver injury. Critical Care, 26(1), 391. https://doi.org/10.1186/s13054-022-04273-w. PMID: 36528615; PMCID: PMC9758799.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Epstein, Y., & Yanovich, R. (2019). Heatstroke. New England Journal of Medicine, 380(25), 2449–2459. https://doi.org/10.1056/NEJMra1810762. PMID: 31216400.

    Article  PubMed  Google Scholar 

  34. Perkins-Kirkpatrick, S. E., & Lewis, S. C. (2020). Increasing trends in regional heatwaves. Nature Communications, 11(1), 3357. https://doi.org/10.1038/s41467-020-16970-7. PMID: 32620857; PMCID: PMC7334217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Watts, N., Amann, M., Arnell, N., Ayeb-Karlsson, S., Beagley, J., Belesova, K., & Costello, A. (2021). The 2020 report of The Lancet Countdown on health and climate change: Responding to converging crises. Lancet, 397(102), 129–170. https://doi.org/10.1016/S0140-6736(20)32290-X. Epub 2020 Dec 2. Erratum in: Lancet. 2020 Dec 14;: PMID: 33278353.

    Article  PubMed  Google Scholar 

  36. Vicedo-Cabrera, A. M., Scovronick, N., Sera, F., Royé, D., Schneider, R., Tobias, A., & Gasparrini, A. (2021). The burden of heat-related mortality attributable to recent human-induced climate change. Nature Climate Change, 11(6), 492–500. https://doi.org/10.1038/s41558-021-01058-x. Epub 2021 May 31. PMID: 34221128; PMCID: PMC7611104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mora, C., Dousset, B., Caldwell, I., et al. (2017). Global risk of deadly heat. Nature Climate Change, 7, 501–506. https://doi.org/10.1038/nclimate3322

    Article  Google Scholar 

  38. Bobb, J. F., Obermeyer, Z., Wang, Y., & Dominici, F. (2014). Cause-specific risk of hospital admission related to extreme heat in older adults. JAMA, 312(24), 2659–2667. https://doi.org/10.1001/jama.2014.15715. PMID: 25536257; PMCID: PMC4319792.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Leon, L. R., & Bouchama, A. (2011). Heat stroke. Comprehensive Physiology, 5(2), 611–647. https://doi.org/10.1002/cphy.c140017. PMID: 25880507.

    Article  Google Scholar 

  40. Gong, C., Liao, H., Zhang, L., Yue, X., Dang, R., & Yang, Y. (2020). Persistent ozone pollution episodes in North China exacerbated by regional transport. Environmental Pollution, 265, 115056. https://doi.org/10.1016/j.envpol.2020.115056. Epub 2020 Jun 20. PMID: 32593927.

    Article  CAS  PubMed  Google Scholar 

  41. Zhang, J., Wei, Y., & Fang, Z. (2019). Ozone pollution: A major health hazard worldwide. Frontiers in Immunology, 10, 2518.

    Article  CAS  PubMed  Google Scholar 

  42. Murray, C. J., Aravkin, A. Y., Zheng, P., Abbafati, C., Abbas, K. M., Abbasi-Kangevari, M., & Borzouei, S. (2020). Global burden of 87 risk factors in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet, 396(10258), 1223–1249. https://doi.org/10.1016/S0140-6736(20)30752-2. PMID: 33069327; PMCID: PMC7566194.

    Article  Google Scholar 

  43. Ainsworth, E. A., Yendrek, C. R., Sitch, S., Collins, W. J., & Emberson, L. D. (2012). The effects of tropospheric ozone on net primary productivity and implications for climate change. Annual Review of Plant Biology, 63, 637–661. https://doi.org/10.1146/annurev-arplant-042110-103829

    Article  CAS  PubMed  Google Scholar 

  44. Bornman, J. F., Barnes, P. W., Robson, T. M., Robinson, S. A., Jansen, M. A. K., Ballaré, C. L., & Flint, S. D. (2019). Linkages between stratospheric ozone, UV radiation and climate change and their implications for terrestrial ecosystems. Photochemical & Photobiological Sciences, 18(3), 681–716. https://doi.org/10.1039/c8pp90061b

    Article  CAS  Google Scholar 

  45. Malley, C. S., Henze, D. K., Kuylenstierna, J. C., Vallack, H. W., Davila, Y., Anenberg, S. C., & Ashmore, M. R. (2017). Updated global estimates of respiratory mortality in adults ≥ 30 years of age attributable to long-term ozone exposure. Environmental Health Perspectives, 125(8), 087021.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Jiang, Y., Huang, J., Li, G., Wang, W., Wang, K., Wang, J., Wei, C., Li, Y., Deng, F., Baccarelli, A. A., Guo, X., & Wu, S. (2023). Ozone pollution and hospital admissions for cardiovascular events. European Heart Journal, 44(18), 1622–1632. https://doi.org/10.1093/eurheartj/ehad091

    Article  CAS  PubMed  Google Scholar 

  47. Chapman, E. J., Byron, C. J., Lasley-Rasher, R., Lipsky, C., Stevens, J. R., & Peters, R. (2020). Effects of climate change on coastal ecosystem food webs: Implications for aquaculture. Marine Environment Research, 162, 105103. https://doi.org/10.1016/j.marenvres.2020.105103. Epub 2020 Aug 22. PMID: 33059212.

    Article  CAS  Google Scholar 

  48. Williamson, C. E., Zepp, R. G., Lucas, R. M., Madronich, S., Austin, A. T., Ballaré, C. L., & Bornman, J. F. (2014). Solar ultraviolet radiation in a changing climate. Nature Climate Change, 4(6), 434–441. https://doi.org/10.1038/nclimate2225

    Article  Google Scholar 

  49. Kültz, D. (2015). Physiological mechanisms used by fish to cope with salinity stress. Journal of Experimental Biology, 218(Pt 12), 1907–1914. https://doi.org/10.1242/jeb.118695. PMID: 26085667.

    Article  PubMed  Google Scholar 

  50. Jeffries, K. M., Connon, R. E., Verhille, C. E., Dabruzzi, T. F., Britton, M. T., Durbin-Johnson, B. P., & Fangue, N. A. (2019). Divergent transcriptomic signatures in response to salinity exposure in two populations of an estuarine fish. Evolutionary Applications, 12(6), 1212–1226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lei, F., & Poulin, R. (2011). Effects of salinity on multiplication and transmission of an intertidal trematode parasite. Marine Biology, 158, 995–1003. https://doi.org/10.1007/s00227-011-1625-7

    Article  Google Scholar 

  52. Russell, M. P. (2013). Echinoderm responses to variation in salinity. Advances in Marine Biology. https://doi.org/10.1016/B978-0-12-408096-6.00003-1

    Article  PubMed  Google Scholar 

  53. Figueiredo, D. A. L., Branco, P. C., Dos Santos, D. A., Emerenciano, A. K., Iunes, R. S., Borges, J. C. S., & da Silva, J. R. M. C. (2016). Ocean acidification affects parameters of immune response and extracellular pH in tropical sea urchins Lytechinus variegatus and Echinometra luccunter. Aquatic Toxicology, 180, 84–94. https://doi.org/10.1016/j.aquatox.2016.09.010. Epub 2016 Sep 17. PMID: 27684601.

    Article  CAS  Google Scholar 

  54. Castillo, N., Saavedra, L. M., Vargas, C. A., Gallardo-Escárate, C., & Détrée, C. (2017). Ocean acidification and pathogen exposure modulate the immune response of the edible mussel Mytilus chilensis. Fish & Shellfish Immunology, 70, 149–155.

    Article  CAS  Google Scholar 

  55. Sun, T., Tang, X., Jiang, Y., & Wang, Y. (2017). Seawater acidification induced immune function changes of haemocytes in Mytilus edulis: A comparative study of CO2 and HCl enrichment. Science and Reports, 7(1), 41488. https://doi.org/10.1038/srep41488. PMID: 28165002; PMCID: PMC5292689.

    Article  CAS  Google Scholar 

  56. Wang, Q., Cao, R., Ning, X., You, L., Mu, C., Wang, C., & Zhao, J. (2016). Effects of ocean acidification on immune responses of the Pacific oyster Crassostrea gigas. Fish & Shellfish Immunology, 49, 24–33. https://doi.org/10.1016/j.fsi.2015.12.025. Epub 2015 Dec 17. PMID: 26706224.

    Article  CAS  Google Scholar 

  57. Huo, Z., Meng, X., Golam, M. R., Cao, W., Wu, Q., Li, Y., & Yan, X. (2018). Seawater acidification affects the immune enzyme activities of the Manila clam Ruditapes philippinarum. Journal of Oceanology and Limnology, 36(5), 1688–1696. https://doi.org/10.1007/s00343-019-7196-z

    Article  CAS  Google Scholar 

  58. Brothers, C. J., Harianto, J., McClintock, J. B., & Byrne, M. (1837). (2016) Sea urchins in a high-CO2 world: The influence of acclimation on the immune response to ocean warming and acidification. Proceedings of the Biological Sciences, 283, 20161501. https://doi.org/10.1098/rspb.2016.1501. PMID: 27559066; PMCID: PMC5013803.

    Article  CAS  Google Scholar 

  59. Dineshram, R., Xiao, S., Ko, G. W. K., Li, J., Smrithi, K., Thiyagarajan, V., & Yu, Z. (2021). Ocean acidification triggers cell signaling, suppress immune and calcification in the Pacific oyster larvae. Frontiers in Marine Science, 8, 782583. https://doi.org/10.3389/fmars.2021.782583

    Article  Google Scholar 

  60. Mackenzie, C. L., Lynch, S. A., Culloty, S. C., & Malham, S. K. (2014). Future oceanic warming and acidification alter immune response and disease status in a commercial shellfish species, Mytilus edulis L. PLoS ONE, 9(6), e99712. https://doi.org/10.1371/journal.pone.0099712. PMID: 24927423; PMCID: PMC4057270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Huang, X., Leung, J. Y., Hu, M., Xu, E. G., & Wang, Y. (2022). Microplastics can aggravate the impact of ocean acidification on the health of mussels: Insights from physiological performance, immunity and byssus properties. Environmental Pollution, 308, 119701. https://doi.org/10.1016/j.envpol.2022.119701. Epub 2022 Jun 30. PMID: 35779660.

    Article  CAS  PubMed  Google Scholar 

  62. Shukla, P. R., Skeg, J., Buendia, E. C., Masson-Delmotte, V., Pörtner, H. O., Roberts, D. C., Malley, J. (2019) Climate change and land: An IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems.

  63. Zha, S., Liu, S., Su, W., Shi, W., Xiao, G., Yan, M., & Liu, G. (2017). Laboratory simulation reveals significant impacts of ocean acidification on microbial community composition and host-pathogen interactions between the blood clam and Vibrio harveyi. Fish & Shellfish Immunology, 71, 393–398. https://doi.org/10.1016/j.fsi.2017.10.034. Epub 2017 Oct 19. PMID: 29056489.

    Article  CAS  Google Scholar 

  64. Tangherlini, M., Corinaldesi, C., Ape, F., Greco, S., Romeo, T., Andaloro, F., & Danovaro, R. (2021). Ocean acidification induces changes in virus–host relationships in Mediterranean benthic ecosystems. Microorganisms, 9(4), 769. https://doi.org/10.3390/microorganisms9040769. PMID: 33917639; PMCID: PMC8067541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Asplund, M. E., Baden, S. P., Russ, S., Ellis, R. P., Gong, N., & Hernroth, B. E. (2014). Ocean acidification and host–pathogen interactions: Blue mussels, Mytilus edulis, encountering Vibrio tubiashii. Environmental Microbiology, 16(4), 1029–1039. https://doi.org/10.1111/1462-2920.12307. Epub 2013 Nov 12. PMID: 24147969.

    Article  PubMed  Google Scholar 

  66. O’Brien, P. A., Morrow, K. M., Willis, B. L., & Bourne, D. G. (2016). Implications of ocean acidification for marine microorganisms from the free-living to the host-associated. Frontiers in Marine Science, 3, 47. https://doi.org/10.3389/fmars.2016.00047

    Article  Google Scholar 

  67. Aires, T., Serebryakova, A., Viard, F., Serrão, E. A., & Engelen, A. H. (2018). Acidification increases abundances of Vibrionales and Planctomycetia associated to a seaweed-grazer system: Potential consequences for disease and prey digestion efficiency. PeerJ, 6, e4377. https://doi.org/10.7717/peerj.4377. PMID: 29610702; PMCID: PMC5880178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hawley, D. M., & Altizer, S. M. (2011). Disease ecology meets ecological immunology: Understanding the links between organismal immunity and infection dynamics in natural populations. Functional Ecology, 25(1), 48–60. https://doi.org/10.1111/j.1365-2435.2010.01753.x

    Article  Google Scholar 

  69. Breitburg, D., Levin, L. A., Oschlies, A., Grégoire, M., Chavez, F. P., Conley, D. J., & Zhang, J. (2018). Declining oxygen in the global ocean and coastal waters. Science, 359(6371), 7240. https://doi.org/10.1126/science.aam7240. PMID: 29301986.

    Article  CAS  Google Scholar 

  70. Bopp, L., et al. (2013). Multiple stressors of ocean ecosystems in the 21st century: Projections with CMIP5 models. Biogeosciences, 10, 6225–6245.

    Article  Google Scholar 

  71. Pezner, A. K., Courtney, T. A., Barkley, H. C., Chou, W. C., Chu, H. C., Clements, S. M., & Andersson, A. J. (2023). Increasing hypoxia on global coral reefs under ocean warming. Nature Climate Change, 13(4), 403–409. https://doi.org/10.1038/s41558-023-01619-2

    Article  Google Scholar 

  72. Keeling, R. F., Körtzinger, A., & Gruber, N. (2010). Ocean deoxygenation in a warming world. Annual Review of Marine Science, 2, 199–229. https://doi.org/10.1146/annurev.marine.010908.163855. PMID: 21141663.

    Article  PubMed  Google Scholar 

  73. Gobler, C. J., & Baumann, H. (2016). Hypoxia and acidification in ocean ecosystems: Coupled dynamics and effects on marine life. Biology Letters, 12(5), 20150976. https://doi.org/10.1098/rsbl.2015.0976. PMID: 27146441; PMCID: PMC4892234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Sampaio, E., Santos, C., Rosa, I. C., Ferreira, V., Pörtner, H. O., Duarte, C. M., & Rosa, R. (2021). Impacts of hypoxic events surpass those of future ocean warming and acidification. Nature Ecology and Evolution, 5(3), 311–321. https://doi.org/10.1038/s41559-020-01370-3. Epub 2021 Jan 11. PMID: 33432134.

    Article  PubMed  Google Scholar 

  75. Dai, M., Zhao, Y., Chai, F., Chen, M., Chen, N., Chen, Y., & Zhang, Z. (2023). Persistent eutrophication and hypoxia in the coastal ocean. Cambridge Prisms: Coastal Futures, 1, e19. https://doi.org/10.1017/cft.2023.7

    Article  Google Scholar 

  76. Shao, F. (2021). Gasdermins: Making pores for pyroptosis. Nature Reviews Immunology, 21, 620–621.

    Article  CAS  PubMed  Google Scholar 

  77. Berkel, C., & Cacan, E. (2023). Lower expression of NINJ1 (Ninjurin 1), a mediator of plasma membrane rupture, is associated with advanced disease and worse prognosis in serous ovarian cancer. Immunologic Research, 71(1), 15–28. https://doi.org/10.1007/s12026-022-09323-7. Epub 2022 Oct 3. PMID: 36184655.

    Article  CAS  PubMed  Google Scholar 

  78. Chen, X., He, W. T., Hu, L., Li, J., Fang, Y., Wang, X., Xu, X., Wang, Z., Huang, K., & Han, J. (2016). Pyroptosis is driven by non-selective gasdermin-D pore and its morphology is different from MLKL channel-mediated necroptosis. Cell Research, 26(9), 1007–1020. https://doi.org/10.1038/cr.2016.100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Wang, S., Liu, Y., Zhang, L., & Sun, Z. (2022). Methods for monitoring cancer cell pyroptosis. Cancer Biology & Medicine, 19(4), 398. https://doi.org/10.20892/j.issn.2095-3941.2021.0504

    Article  CAS  Google Scholar 

  80. Broz, P., Pelegrín, P., & Shao, F. (2020). The gasdermins, a protein family executing cell death and inflammation. Nature Reviews Immunology, 20(3), 143–157. https://doi.org/10.1038/s41577-019-0228-2. PMID: 31690840.

    Article  CAS  PubMed  Google Scholar 

  81. Lu, L., et al. (2022). Emerging mechanisms of pyroptosis and its therapeutic strategy in cancer. Cell Death Discovery, 8, 1–13.

    Article  Google Scholar 

  82. Berkel, C., & Cacan, E. (2023). Pollutant-induced pyroptosis in humans and other animals. Life Sciences, 316, 121386. https://doi.org/10.1016/j.lfs.2023.121386. PMID: 36657639.

    Article  CAS  PubMed  Google Scholar 

  83. Kayagaki, N., Kornfeld, O. S., Lee, B. L., Stowe, I. B., O’Rourke, K., Li, Q., Sandoval, W., Yan, D., Kang, J., Xu, M., Zhang, J., Lee, W. P., McKenzie, B. S., Ulas, G., Payandeh, J., Roose-Girma, M., Modrusan, Z., Reja, R., Sagolla, M., … Dixit, V. M. (2021). NINJ1 mediates plasma membrane rupture during lytic cell death. Nature, 591(7848), 131–136. https://doi.org/10.1038/s41586-021-03218-7

    Article  CAS  PubMed  Google Scholar 

  84. Berkel, C., & Cacan, E. (2021). Differential expression and copy number variation of gasdermin (GSDM) family members, pore-forming proteins in pyroptosis, in normal and malignant serous ovarian tissue. Inflammation, 44(6), 2203–2216. https://doi.org/10.1007/s10753-021-01493-0. PMID: 34091823.

    Article  CAS  PubMed  Google Scholar 

  85. Yu, P., Zhang, X., Liu, N., Tang, L., Peng, C., & Chen, X. (2021). Pyroptosis: Mechanisms and diseases. Signal Transduction and Targeted Therapy, 6(1), 128. https://doi.org/10.1038/s41392-021-00507-5. PMID: 33776057; PMCID: PMC8005494.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Wei, X., Xie, F., Zhou, X., Wu, Y., Yan, H., Liu, T., & Zhang, L. (2022). Role of pyroptosis in inflammation and cancer. Cellular and Molecular Immunology, 19(9), 971–992. https://doi.org/10.1038/s41423-022-00905-x. PMID: 35970871; PMCID: PMC9376585.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Wu, Y., Zhang, J., Yu, S., Li, Y., Zhu, J., Zhang, K., & Zhang, R. (2022). Cell pyroptosis in health and inflammatory diseases. Cell Death Discov., 8(1), 191. https://doi.org/10.1038/s41420-022-00998-3. PMID: 35411030; PMCID: PMC8995683.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Zhou, Z., He, H., Wang, K., Shi, X., Wang, Y., Su, Y., Wang, Y., Li, D., Liu, W., Zhang, Y., Shen, L., Han, W., Shen, L., Ding, J., & Shao, F. (2020). Granzyme A from cytotoxic lymphocytes cleaves GSDMB to trigger pyroptosis in target cells. Science, 368(6494), eaaz7548. https://doi.org/10.1126/science.aaz7548

    Article  CAS  PubMed  Google Scholar 

  89. Kambara, H., Liu, F., Zhang, X., Liu, P., Bajrami, B., Teng, Y., & Luo, H. R. (2018). Gasdermin D exerts anti-inflammatory effects by promoting neutrophil death. Cell Reports, 22(11), 2924–2936.

    Article  CAS  PubMed  Google Scholar 

  90. Burgener, S. S., Leborgne, N. G. F., Snipas, S. J., Salvesen, G. S., Bird, P. I., & Benarafa, C. (2019). Cathepsin G inhibition by Serpinb1 and Serpinb6 prevents programmed necrosis in neutrophils and monocytes and reduces GSDMD-driven inflammation. Cell Reports., 27(12), 3646–3656. https://doi.org/10.1016/j.celrep.2019.05.065

    Article  CAS  PubMed  Google Scholar 

  91. Yamaoka, Y., Matsunaga, S., Jeremiah, S. S., Nishi, M., Miyakawa, K., Morita, T., Khatun, H., Shimizu, H., Okabe, N., Kimura, H., Hasegawa, H., & Ryo, A. (2021). Zika virus protease induces caspase-independent pyroptotic cell death by directly cleaving gasdermin D. Biochemical and Biophysical Research Communications, 534, 666–671. https://doi.org/10.1016/j.bbrc.2020.11.023

    Article  CAS  PubMed  Google Scholar 

  92. Li, T., Zheng, G., Li, B., & Tang, L. (2021). Pyroptosis: A promising therapeutic target for noninfectious diseases. Cell Proliferation, 54(11), e13137. https://doi.org/10.1111/cpr.13137. PMID: 34590363; PMCID: PMC8560609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Chen, G. Y., & Nuñez, G. (2010). Sterile inflammation: sensing and reacting to damage. Nature Reviews Immunology, 10(12), 826–837. https://doi.org/10.1038/nri2873. Epub 2010 Nov 19. PMID: 21088683; PMCID: PMC3114424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Feldman, N., Rotter-Maskowitz, A., & Okun, E. (2015). DAMPs as mediators of sterile inflammation in aging-related pathologies. Ageing Research Reviews, 24, 29–39. https://doi.org/10.1016/j.arr.2015.01.003. PMID: 25641058.

    Article  CAS  PubMed  Google Scholar 

  95. Ciążyńska, M., Olejniczak-Staruch, I., Sobolewska-Sztychny, D., Narbutt, J., Skibińska, M., & Lesiak, A. (2021). Ultraviolet radiation and chronic inflammation—molecules and mechanisms involved in skin carcinogenesis: A narrative review. Life., 11(4), 326. https://doi.org/10.3390/life11040326. PMID: 33917793; PMCID: PMC8068112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Cho, S., Ying, F., & Sweeney, G. (2023). Sterile inflammation and the NLRP3 inflammasome in cardiometabolic disease. Biomedicine Journal, 46(5), 100624. https://doi.org/10.1016/j.bj.2023.100624. PMID: 37336361; PMCID: PMC10539878.

    Article  CAS  Google Scholar 

  97. Rock, K. L., Latz, E., Ontiveros, F., & Kono, H. (2009). The sterile inflammatory response. Annual Review of Immunology, 28, 321–342. https://doi.org/10.1146/annurev-immunol-030409-101311. PMID: 20307211; PMCID: PMC4315152.

    Article  CAS  Google Scholar 

  98. Furman, D., Campisi, J., Verdin, E., Carrera-Bastos, P., Targ, S., Franceschi, C., & Slavich, G. M. (2019). Chronic inflammation in the etiology of disease across the life span. Nature Medicine, 25(12), 1822–1832. https://doi.org/10.1038/s41591-019-0675-0. Epub 2019 Dec 5. PMID: 31806905; PMCID: PMC7147972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Pahwa, R.., Goyal, A., Jialal, I. (2023) Chronic Inflammation. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing (PMID: 29630225).

  100. Yuan, J., Liu, Y., Wang, J., Zhao, Y., Li, K., Jing, Y., & Wang, F. (2018). Long-term persistent organic pollutants exposure induced telomere dysfunction and senescence-associated secretary phenotype. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 73(8), 1027–1035. https://doi.org/10.1093/gerona/gly002. PMID: 29360938; PMCID: PMC6037063.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Chang, S. C., & Yang, W. C. V. (2016). Hyperglycemia, tumorigenesis, and chronic inflammation. Critical Reviews in Oncology Hematology, 108, 146–153. https://doi.org/10.1016/j.critrevonc.2016.11.003. PMID: 27931833.

    Article  PubMed  Google Scholar 

  102. Multhoff, G., Molls, M., & Radons, J. (2012). Chronic inflammation in cancer development. Frontiers in Immunology, 2, 17950. https://doi.org/10.3389/fimmu.2011.00098. PMID: 22566887; PMCID: PMC3342348.

    Article  Google Scholar 

  103. Tan, Y., Chen, Q., Li, X., Zeng, Z., Xiong, W., Li, G., & Yi, M. (2021). Pyroptosis: a new paradigm of cell death for fighting against cancer. Journal of Experimental & Clinical Cancer Research, 40(1), 153. https://doi.org/10.1186/s13046-021-01959-x

    Article  CAS  Google Scholar 

  104. da Costa, J. C., de Souza, S. S., & Val, A. L. (2022). Impact of high temperature, CO2 and parasitic infection on inflammation, immunodepression and programmed cell death in Colossoma macropomum at the transcriptional level. Microbial Pathogenesis, 172, 105804. https://doi.org/10.1016/j.micpath.2022.105804

    Article  CAS  PubMed  Google Scholar 

  105. da Costa, J. C., de Souza, S. S., Castro, J. D. S., Amanajás, R. D., & Val, A. L. (2021). Climate change affects the parasitism rate and impairs the regulation of genes related to oxidative stress and ionoregulation of Colossoma macropomum. Science and Reports, 11(1), 22350. https://doi.org/10.1038/s41598-021-01830-1. PMID: 34785749; PMCID: PMC8595885.

    Article  CAS  Google Scholar 

  106. Ilgová, J., Salát, J., & Kašný, M. (2021). Molecular communication between the monogenea and fish immune system. Fish & Shellfish Immunology, 112, 179–190. https://doi.org/10.1016/j.fsi.2020.08.023. PMID: 32800986.

    Article  CAS  Google Scholar 

  107. IPCC Climate change 2014: Synthesis report Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Ipcc (2014). https://doi.org/10.1017/CBO9781107415324.

  108. Zhang, Z., & Lieberman, J. (2020). Lighting a fire on the reef. Science Immunology, 5(54), eabf0905. https://doi.org/10.1126/sciimmunol.abf0905

    Article  PubMed  PubMed Central  Google Scholar 

  109. Song, Z., Zou, J., Wang, M., Chen, Z., & Wang, Q. (2022). A comparative review of pyroptosis in mammals and fish. Journal of Inflammation Research. https://doi.org/10.2147/JIR.S361266. PMID: 35431566; PMCID: PMC9012342.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Jiang, S., Zhou, Z., Sun, Y., Zhang, T., & Sun, L. (2020). Coral gasdermin triggers pyroptosis. Science Immunology, 5(54), eabd2591. https://doi.org/10.1126/sciimmunol.abd2591

    Article  CAS  PubMed  Google Scholar 

  111. Kimes, N. E., Grim, C. J., Johnson, W. R., Hasan, N. A., Tall, B. D., Kothary, M. H., Kiss, H., Munk, A. C., Tapia, R., Green, L., Detter, C., Bruce, D. C., Brettin, T. S., Colwell, R. R., & Morris, P. J. (2012). Temperature regulation of virulence factors in the pathogen Vibrio coralliilyticus. ISME Journal, 6(4), 835–846. https://doi.org/10.1038/ismej.2011.154

    Article  CAS  PubMed  Google Scholar 

  112. Ben-Haim, Y., Zicherman-Keren, M., & Rosenberg, E. (2003). Temperature-regulated bleaching and lysis of the coral Pocillopora damicornis by the novel pathogen Vibrio coralliilyticus. Applied and Environment Microbiology, 69(7), 4236–4242.

    Article  CAS  Google Scholar 

  113. Geng, Y., Ma, Q., Liu, Y. N., Peng, N., Yuan, F. F., Li, X. G., & Su, L. (2015). Heatstroke induces liver injury via IL-1β and HMGB1-induced pyroptosis. Journal of Hepatology, 63(3), 622–633. https://doi.org/10.1016/j.jhep.2015.04.010

    Article  CAS  PubMed  Google Scholar 

  114. Zhang, M., Zhu, X., Tong, H., Lou, A., Li, Y., Li, Y., & Li, X. (2019). AVE 0991 attenuates pyroptosis and liver damage after heatstroke by inhibiting the ROS-NLRP3 inflammatory signalling pathway. Biomedicine Research International. https://doi.org/10.1155/2019/1806234. PMID: 31531346; PMCID: PMC6720052.

    Article  Google Scholar 

  115. Liu, Y., Wang, Z., Xie, W., Gu, Z., Xu, Q., & Su, L. (2017). Oxidative stress regulates mitogen-activated protein kinases and c-Jun activation involved in heat stress and lipopolysaccharide-induced intestinal epithelial cell apoptosis. Molecular Medicine Reports, 16(3), 2579–2587. https://doi.org/10.3892/mmr.2017.6859. PMID: 28656249; PMCID: PMC5548022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Gu, Z. T., Wang, H., Li, L., Liu, Y. S., Deng, X. B., Huo, S. F., & Su, L. (2014). Heat stress induces apoptosis through transcription-independent p53-mediated mitochondrial pathways in human umbilical vein endothelial cell. Science Reports, 4(1), 4469. https://doi.org/10.1038/srep04469. PMID: 24667845; PMCID: PMC3966036.

    Article  CAS  Google Scholar 

  117. Evavold, C. L., Hafner-Bratkovič, I., Devant, P., D’Andrea, J. M., Ngwa, E. M., Boršić, E., & Kagan, J. C. (2021). Control of gasdermin D oligomerization and pyroptosis by the Ragulator-Rag-mTORC1 pathway. Cell, 184(17), 4495–4511. https://doi.org/10.1016/j.cell.2021.06.028. PMID: 34289345; PMCID: PMC8380731.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Wang, Y., Shi, P., Chen, Q., Huang, Z., Zou, D., Zhang, J., & Lin, Z. (2019). Mitochondrial ROS promote macrophage pyroptosis by inducing GSDMD oxidation. Journal of Molecular Cell Biology, 11(12), 1069–1082. https://doi.org/10.1093/jmcb/mjz020. PMID: 30860577; PMCID: PMC6934151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Bai, R., Lang, Y., Shao, J., Deng, Y., Refuhati, R., & Cui, L. (2021). The role of NLRP3 inflammasome in cerebrovascular diseases pathology and possible therapeutic targets. ASN Neuro, 13, 17590914211018100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Bertheloot, D., Latz, E., & Franklin, B. S. (2021). Necroptosis, pyroptosis and apoptosis: An intricate game of cell death. Cellular & Molecular Immunology, 18(5), 1106–1121. https://doi.org/10.1038/s41423-020-00630-3. PMID: 33785842; PMCID: PMC8008022.

    Article  CAS  Google Scholar 

  121. Tsuchiya, K., Nakajima, S., Hosojima, S., Thi Nguyen, D., Hattori, T., Le Manh, T., & Suda, T. (2024). Nature Communication, 10(1), 2091. https://doi.org/10.1038/s41467-019-09753-2. PMID: 31064994; PMCID: PMC6505044.

    Article  CAS  Google Scholar 

  122. Devant, P., Boršić, E., Ngwa, E. M., Xiao, H., Chouchani, E. T., Thiagarajah, J. R., & Kagan, J. C. (2023). Gasdermin D pore-forming activity is redox-sensitive. Cell Reports. https://doi.org/10.1016/j.celrep.2023.112008. PMID: 36662620; PMCID: PMC9947919.

    Article  PubMed  Google Scholar 

  123. Pei, Y., Geng, Y., & Su, L. (2018). Pyroptosis of HUVECs can be induced by heat stroke. Biochemical and Biophysical Research Communications, 506(3), 626–631. https://doi.org/10.1016/j.bbrc.2018.10.051. PMID: 30454698.

    Article  CAS  PubMed  Google Scholar 

  124. Kang, R., Chen, R., Zhang, Q., Hou, W., Wu, S., Cao, L., & Tang, D. (2014). HMGB1 in health and disease. Molecular Aspects of Medicine, 40, 1–116. https://doi.org/10.1016/j.mam.2014.05.001. PMID: 25010388; PMCID: PMC4254084.

    Article  CAS  PubMed  Google Scholar 

  125. Tong, H. S., Tang, Y. Q., Chen, Y., Qiu, J. M., Wen, Q., & Su, L. (2011). Early elevated HMGB1 level predicting the outcome in exertional heatstroke. Journal of Trauma and Acute Care Surgery, 71(4), 808–814. https://doi.org/10.1097/TA.0b013e318220b957. PMID: 21841514.

    Article  CAS  Google Scholar 

  126. Tong, H., Tang, Y., Chen, Y., Yuan, F., Liu, Z., Peng, N., & Su, L. (2013). HMGB1 activity inhibition alleviating liver injury in heatstroke. The Journal of Trauma and Acute Care Surgery, 74(3), 801–807. https://doi.org/10.1097/TA.0b013e31827e9a65. PMID: 23425738.

    Article  CAS  PubMed  Google Scholar 

  127. Yin, H., Wu, M., Lu, Y., Wu, X., Yu, B., Chen, R., & Tong, H. (2022). HMGB1-activatied NLRP3 inflammasome induces thrombocytopenia in heatstroke rat. PeerJ, 10, e13799. https://doi.org/10.7717/peerj.13799. PMID: 35945940; PMCID: PMC9357367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Volchuk, A., Ye, A., Chi, L., Steinberg, B. E., & Goldenberg, N. M. (2020). Indirect regulation of HMGB1 release by gasdermin D. Nature Communications, 11(1), 4561. https://doi.org/10.1038/s41467-020-18443-3. PMID: 32917873; PMCID: PMC7486936.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Tian, L., Yan, J., Li, K., Zhang, W., Lin, B., Lai, W., & Liu, X. (2021). Ozone exposure promotes pyroptosis in rat lungs via the TLR2/4-NF-κB-NLRP3 signaling pathway. Toxicology, 450, 152668. https://doi.org/10.1016/j.tox.2020.152668. Epub 2020 Dec 28. PMID: 33383130.

    Article  CAS  PubMed  Google Scholar 

  130. Tian, L., Li, N., Li, K., Tan, Y., Han, J., Lin, B., & Liu, X. (2022). Ambient ozone exposure induces ROS related-mitophagy and pyroptosis via NLRP3 inflammasome activation in rat lung cells. Ecotoxicology and Environmental Safety, 240, 113663. https://doi.org/10.1016/j.ecoenv.2022.113663. PMID: 35642860.

    Article  CAS  PubMed  Google Scholar 

  131. Birrer, S. C., Reusch, T. B., & Roth, O. (2012). Salinity change impairs pipefish immune defence. Fish & Shellfish Immunology, 33(6), 1238–1248. https://doi.org/10.1016/j.fsi.2012.08.028. PMID: 22982326.

    Article  CAS  Google Scholar 

  132. Lu, M., Su, M., Liu, N., & Zhang, J. (2022). Effects of environmental salinity on the immune response of the coastal fish Scatophagus argus during bacterial infection. Fish & Shellfish Immunology, 124, 401–410. https://doi.org/10.1016/j.fsi.2022.04.029. PMID: 35472400.

    Article  CAS  Google Scholar 

  133. Gutiérrez, J. S., Abad-Gómez, J. M., Villegas, A., Sánchez-Guzmán, J. M., & Masero, J. A. (2013). Effects of salinity on the immune response of an ‘osmotic generalist’bird. Oecologia, 171, 61–69. https://doi.org/10.1007/s00442-012-2405-x. PMID: 22782496.

    Article  PubMed  Google Scholar 

  134. Honorato, T. B. M., Boni, R., da Silva, P. M., & Marques-Santos, L. F. (2017). Effects of salinity on the immune system cells of the tropical sea urchin Echinometra lucunter. Journal of Experimental Marine Biology and Ecology, 486, 22–31.

    Article  CAS  Google Scholar 

  135. Hieu, D. Q., Hang, B. T. B., Huong, D. T. T., et al. (2021). Salinity affects growth performance, physiology, immune responses and temperature resistance in striped catfish (Pangasianodon hypophthalmus) during its early life stages. Fish Physiology and Biochemistry, 47, 1995–2013. https://doi.org/10.1007/s10695-021-01021-9

    Article  CAS  PubMed  Google Scholar 

  136. Zhang, M., Li, L., Liu, Y., & Gao, X. (2019). Effects of a sudden drop in salinity on immune response mechanisms of Anadara kagoshimensis. International Journal of Molecular Sciences, 20(18), 4365. https://doi.org/10.3390/ijms20184365. PMID: 31491977; PMCID: PMC6769905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Wang, L., Pan, L., Ding, Y., & Ren, X. (2018). Effects of low salinity stress on immune response and evaluating indicators of the swimming crab Portunus trituberculatus. Aquaculture Research, 49(2), 659–667. https://doi.org/10.1111/are.13495

    Article  CAS  Google Scholar 

  138. Yu, Z., Li, C., & Guan, Y. (2003). Effect of salinity on the immune responses and outbreak of white spot syndrome in the shrimp Marsupenaeus japonicus. Ophelia, 57(2), 99–106. https://doi.org/10.1080/00785236.2003.10409507

    Article  Google Scholar 

  139. Sposito, F., Northey, S., Charras, A., McNamara, P. S., & Hedrich, C. M. (2023). Hypertonic saline induces inflammation in human macrophages through the NLRP1 inflammasome. Genes & Genes Immunity, 24(5), 263–269. https://doi.org/10.1038/s41435-023-00218-7

    Article  CAS  PubMed  Google Scholar 

  140. Ip, W. E., & Medzhitov, R. (2015). Macrophages monitor tissue osmolarity and induce inflammatory response through NLRP3 and NLRC4 inflammasome activation. Nature Communications, 6(1), 6931.

    Article  CAS  PubMed  Google Scholar 

  141. Lara-Reyna, S., Scambler, T., Holbrook, J., Wong, C., Jarosz-Griffiths, H. H., Martinon, F., & McDermott, M. F. (2019). Metabolic reprograming of cystic fibrosis macrophages via the IRE1α arm of the unfolded protein response results in exacerbated inflammation. Frontiers in Immunology, 10, 460242.

    Article  Google Scholar 

  142. Zhang, Y. L., Chen, P. X., Guan, W. J., Guo, H. M., Qiu, Z. E., Xu, J. W., & Zhong, N. S. (2018). Increased intracellular Cl− concentration promotes ongoing inflammation in airway epithelium. Mucosal Immunology, 11(4), 1149–1157.

    Article  CAS  PubMed  Google Scholar 

  143. Wang, Z., Chen, T., Yang, C., Bao, T., Yang, X., He, F., & Yang, S. (2020). Secoisolariciresinol diglucoside suppresses Dextran sulfate sodium salt-induced colitis through inhibiting NLRP1 inflammasome. International Immunopharmacology, 78, 105931.

    Article  CAS  PubMed  Google Scholar 

  144. Scambler, T., Jarosz-Griffiths, H. H., Lara-Reyna, S., Pathak, S., Wong, C., Holbrook, J., & McDermott, M. F. (2019). ENaC-mediated sodium influx exacerbates NLRP3-dependent inflammation in cystic fibrosis. eLife, 8, e49248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Jancic, C. C., Cabrini, M., Gabelloni, M. L., Rodrigues, C. R., Salamone, G., Trevani, A. S., & Geffner, J. (2012). Low extracellular pH stimulates the production of IL-1β by human monocytes. Cytokine, 57(2), 258–268. https://doi.org/10.1016/j.cyto.2011.11.013. PMID: 22154780.

    Article  CAS  PubMed  Google Scholar 

  146. Rajamäki, K., Nordström, T., Nurmi, K., Åkerman, K. E., Kovanen, P. T., Öörni, K., & Eklund, K. K. (2013). Extracellular acidosis is a novel danger signal alerting innate immunity via the NLRP3 inflammasome. Journal of Biological Chemistry, 288(19), 13410–13419. https://doi.org/10.1074/jbc.M112.426254. Epub 2013 Mar 25. PMID: 23530046; PMCID: PMC3650379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Zhao, K., An, R., Xiang, Q., Li, G., Wang, K., Song, Y., & Yang, C. (2021). Acid-sensing ion channels regulate nucleus pulposus cell inflammation and pyroptosis via the NLRP3 inflammasome in intervertebral disc degeneration. Cell Proliferation, 54(1), e12941. https://doi.org/10.1111/cpr.12941. PMID: 33111436; PMCID: PMC7791185.

    Article  CAS  PubMed  Google Scholar 

  148. Yu, L. M., Zhang, W. H., Han, X. X., Li, Y. Y., Lu, Y., Pan, J., & Liu, Y. H. (2019). Hypoxia-induced ROS contribute to myoblast pyroptosis during obstructive sleep apnea via the NF-κB/HIF-1α signaling pathway. Oxidative Medicine and Cellular Longevity, 2019, 4596368. https://doi.org/10.1155/2019/4596368. PMID: 31885794; PMCID: PMC6927050.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Jiang, Y., Huang, J., Xia, Y., Sun, Z., Hu, P., Wang, D., & Liu, Y. (2023). Hypoxia activates GPR146 which participates in pulmonary vascular remodeling by promoting pyroptosis of pulmonary artery endothelial cells. European Journal of Pharmacology, 941, 175502. https://doi.org/10.1016/j.ejphar.2023.175502. PMID: 36638952.

    Article  CAS  PubMed  Google Scholar 

  150. Bai, C., Zhu, Y., Dong, Q., & Zhang, Y. (2022). Chronic intermittent hypoxia induces the pyroptosis of renal tubular epithelial cells by activating the NLRP3 inflammasome. Bioengineered, 13(3), 7528–7540. https://doi.org/10.1080/21655979.2022.2047394. PMID: 35263214; PMCID: PMC8973594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Xin, X., Yang, K., Liu, H., & Li, Y. (2022). Hypobaric hypoxia triggers pyroptosis in the retina via NLRP3 inflammasome activation. Apoptosis, 27(3), 222–232. https://doi.org/10.1007/s10495-022-01710-7. PMID: 35088163.

    Article  CAS  PubMed  Google Scholar 

  152. Cheng, S. B., Nakashima, A., Huber, W. J., Davis, S., Banerjee, S., Huang, Z., & Sharma, S. (2019). Pyroptosis is a critical inflammatory pathway in the placenta from early onset preeclampsia and in human trophoblasts exposed to hypoxia and endoplasmic reticulum stressors. Cell Death Disease, 10(12), 927. https://doi.org/10.1038/s41419-019-2162-4. PMID: 31804457; PMCID: PMC6895177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Watanabe, S., Usui-Kawanishi, F., Karasawa, T., Kimura, H., Kamata, R., Komada, T., & Takahashi, M. (2020). Glucose regulates hypoxia-induced NLRP3 inflammasome activation in macrophages. Journal of Cell Physiology, 235(10), 7554–7566. https://doi.org/10.1002/jcp.29659. PMID: 32115713.

    Article  CAS  Google Scholar 

  154. Bernicker, E., Averbuch, S. D., Edge, S., Kamboj, J., Khuri, F. R., Pierce, J. Y., Schiller, J., Sirohi, B., Thomas, A., Moushey, A., Phillips, J., & Hendricks, C. (2024). Climate change and cancer care: A policy statement from ASCO. JCO Oncology Practice, 20(2), 178–186. https://doi.org/10.1200/OP.23.00637

    Article  PubMed  Google Scholar 

  155. Yu, P., Xu, R., Yang, Z., Ye, T., Liu, Y., Li, S., & Guo, Y. (2022). Cancer and ongoing climate change: Who are the most affected? ACS Environmental Au, 3(1), 5–11. https://doi.org/10.1021/acsenvironau.2c00012. PMID: 36691655; PMCID: PMC9853937.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Schiller, J. H. (2024). Climate change: Why oncologists need to get involved. BJC Rep., 2, 20. https://doi.org/10.1038/s44276-023-00023-9

    Article  Google Scholar 

  157. Nogueira, L. M., Crane, T. E., Ortiz, A. P., D’Angelo, H., & Neta, G. (2023). Climate change and cancer. Cancer Epidemiology, Biomarkers & Prevention, 32(7), 869–875. https://doi.org/10.1158/1055-9965.EPI-22-1234

    Article  Google Scholar 

  158. Angeli, J. P. F., Freitas, F. P., Nepachalovich, P., Puentes, L., Zilka, O., Inague, A., & Conrad, M. (2021). 7-Dehydrocholesterol is an endogenous suppressor of ferroptosis. Nature, 626(7998), 401–410. https://doi.org/10.1038/s41586-023-06878-9. PMID: 38297129.

    Article  CAS  Google Scholar 

  159. Zhang, W., Fan, W., Guo, J., & Wang, X. (2022). Osmotic stress activates RIPK3/MLKL-mediated necroptosis by increasing cytosolic pH through a plasma membrane Na+/H+ exchanger. Science Signaling, 15(734), 5881. https://doi.org/10.1126/scisignal.abn5881. PMID: 35580168.

    Article  CAS  Google Scholar 

  160. Galluzzi, L., Vitale, I., Aaronson, S. A., Abrams, J. M., Adam, D., Agostinis, P., & Turk, B. (2018). Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differentiation, 25(3), 486–541. https://doi.org/10.1038/s41418-017-0012-4. PMID: 29362479; PMCID: PMC5864239.

    Article  PubMed  PubMed Central  Google Scholar 

  161. Berkel, C. (2024). An analysis of gasdermin family of genes in UCEC with respect to malignancy status, mutation percentages and histologic diagnosis. Genome Instability & Disease. https://doi.org/10.1007/s42764-024-00128-6

    Article  Google Scholar 

Download references

Funding

The author is funded by The Scientific and Technological Research Council of Turkey (TUBITAK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caglar Berkel.

Ethics declarations

Conflict of interest

The author declares no conflicts of interest.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berkel, C. Potential Impact of Climate Change-Induced Alterations on Pyroptotic Cell Death in Animal Cells: A Review. Mol Biotechnol (2024). https://doi.org/10.1007/s12033-024-01182-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12033-024-01182-x

Keywords

Navigation