Skip to main content
Log in

Entrapment of Papain in Chitosan–Polyethylene Glycol Hybrid Nanohydrogels: Presenting a Model for Protein Delivery Systems

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

In this study, the process of manufacturing nanohydrogels containing papain and how to release it was investigated. Chitosan nanohydrogels and chitosan–polyethylene glycol hybrid nanohydrogels were used to entrapment of papain as a protein model. In order to evaluate and confirm different properties of nanohydrogels such as size, shape, the rate of swelling and flexibility, different methods was used. The maximum amount of papain entrapment was observed in 0.75% concentration of chitosan and 1% concentration of sodium Tripolyphosphate (TPP) as linker. The results of scanning electron microscope (SEM) and X-ray diffraction (XRD) patterns showed that nanohydrogels containing papain on a nano scale are very porous and swollen. Differential scanning calorimetry (DSC) thermograms analysis showed that nanohydrogels have relatively good water absorption capacity. Also, by adding polyethylene glycol to chitosan, the melting temperature of hybrid nanohydrogels decreased and this can be a reason for the formation of flexible structures in these nanohydrogels. In chitosan nanohydrogels, the highest release rate of papain was observed at pH lower than 7 and high temperatures, but by adding polyethylene glycol to the chitosan, in addition to increasing papain release, a proper and continuous release of papain was observed at temperature and pH close to physiological conditions, especially at low ratios of polyethylene glycol. According to the present results, hybrid nanohydrogels can have a good potential in protein delivery systems in terms of structure and release.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Anwar, M., Muhammad, F., & Akhtar, B. (2021). Biodegradable nanoparticles as drug delivery devices. Journal of Drug Delivery Science and Technology, 64, 102638.

    Article  CAS  Google Scholar 

  2. Asghari, F., Samiei, M., Adibkia, K., Akbarzadeh, A., & Davaran, S. (2017). Biodegradable and biocompatible polymers for tissue engineering application: A review. Artificial Cells, Nanomedicine, and Biotechnology, 45, 185–192.

    Article  CAS  PubMed  Google Scholar 

  3. Azadi, A., Hamidi, M., & Rouini, M.-R. (2013). Methotrexate-loaded chitosan nanogels as ‘Trojan Horses’ for drug delivery to brain: Preparation and in vitro/in vivo characterization. International Journal of Biological Macromolecules, 62, 523–530.

    Article  CAS  PubMed  Google Scholar 

  4. Yousefpour, P., Atyabi, F., Dinarvand, R., & Vasheghani-Farahani, E. (2011). Preparation and comparison of chitosan nanoparticles with different degrees of glutathione thiolation. Daru, 19, 367.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhao, D., Yu, S., Sun, B., Gao, S., Guo, S., & Zhao, K. (2018). Biomedical applications of chitosan and its derivative nanoparticles. Polymers, 10, 462.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Yang, H., Zhang, Y., Zhou, F., Guo, J., Tang, J., Han, Y., Li, Z., & Fu, C. (2020). Preparation, bioactivities and applications in food industry of chitosan-based maillard products: A review. Molecules, 26, 166.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Dalwadi, C., & Patel, G. (2015). Application of nanohydrogels in drug delivery systems: Recent patents review. Recent Patents on Nanotechnology, 9, 17–25.

    Article  CAS  PubMed  Google Scholar 

  8. Khoee, S., & Kardani, M. (2013). Hydrogels as controlled drug delivery carriers. Polymerization Quarterly, 2, 16–27.

    Google Scholar 

  9. Bruno, B. J., Miller, G. D., & Lim, C. S. (2013). Basics and recent advances in peptide and protein drug delivery. Therapeutic Delivery, 4, 1443–1467.

    Article  CAS  PubMed  Google Scholar 

  10. Verma, S., Goand, U. K., Husain, A., Katekar, R. A., Garg, R., & Gayen, J. R. (2021). Challenges of peptide and protein drug delivery by oral route: Current strategies to improve the bioavailability. Drug Development Research, 82, 927–944.

    Article  CAS  PubMed  Google Scholar 

  11. Bickel, U., Yoshikawa, T., & Pardridge, W. M. (2001). Delivery of peptides and proteins through the blood–brain barrier. Advanced Drug Delivery Reviews, 46, 247–279.

    Article  CAS  PubMed  Google Scholar 

  12. Soni, G., & Yadav, K. S. (2016). Nanogels as potential nanomedicine carrier for treatment of cancer: A mini review of the state of the art. Saudi Pharmaceutical Journal, 24, 133–139.

    Article  PubMed  Google Scholar 

  13. Hendrickson, G. R., & Lyon, L. A. (2010). Microgel translocation through pores under confinement. Angewandte Chemie International Edition, 49, 2193–2197.

    Article  CAS  PubMed  Google Scholar 

  14. Zhao, L., Zhu, L., Liu, F., Liu, C., Wang, Q., Zhang, C., Li, J., Liu, J., Qu, X., & Yang, Z. (2011). pH triggered injectable amphiphilic hydrogel containing doxorubicin and paclitaxel. International Journal of Pharmaceutics, 410, 83–91.

    Article  CAS  PubMed  Google Scholar 

  15. Lee, S., Tong, X., & Yang, F. (2016). Effects of the poly(ethylene glycol) hydrogel crosslinking mechanism on protein release. Biomaterials Science, 4, 405–411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kamaci, M., & Kaya, I. (2023). Chitosan based hybrid hydrogels for drug delivery: Preparation, biodegradation, thermal, and mechanical properties. Polymers for Advanced Technologies, 34, 779–788.

    Article  CAS  Google Scholar 

  17. Chu, Y., Song, R., Zhang, L., Dai, H., & Wu, W. (2020). Water-dispersible, biocompatible and fluorescent poly(ethylene glycol)-grafted cellulose nanocrystals. International Journal of Biological Macromolecules, 153, 46–54.

    Article  CAS  PubMed  Google Scholar 

  18. Pereira, M. P., de Gomes, M. G., Izoton, J. C., Nakama, K. A., Dos Santos, R. B., Savall, A. S. P., Ramalho, J. B., Roman, S. S., Luchese, C., & Cibin, F. W. (2019). Cationic and anionic unloaded polymeric nanocapsules: Toxicological evaluation in rats shows low toxicity. Biomedicine and Pharmacotherapy, 116, 109014.

    Article  CAS  PubMed  Google Scholar 

  19. Wang, X., Song, R., Johnson, M., Shen, P., Zhang, N., Lara-Sáez, I., Xu, Q., & Wang, W. (2023). Chitosan-based hydrogels for infected wound treatment. Macromolecular Bioscience, 23(9), e2300094.

    Article  PubMed  Google Scholar 

  20. Channamade, C., Raju, J. M., Vijayaprakash, S. B., Bora, R., & Shekhar, N. R. (2021). Promise approach on chemical stability enhancement of papain by encapsulation system: A review. Journal of Young Pharmacists, 13, 87.

    Article  CAS  Google Scholar 

  21. Mamboya, E. A. F., & Amri, E. (2012). Papain, a plant enzyme of biological importance: A review. American Journal of Biochemistry and Biotechnology, 8, 99–104.

    Article  Google Scholar 

  22. Moreira Filho, R. N. F., Vasconcelos, N. F., Andrade, F. K., de Freitas Rosa, M., & Vieira, R. S. (2020). Papain immobilized on alginate membrane for wound dressing application. Colloids and Surfaces B: Biointerfaces, 194, 111222.

    Article  CAS  PubMed  Google Scholar 

  23. Trickett, P. (1964). Proteolytic enzymes in treatment of athletic injuries. Applied Therapeutics, 6, 647–652.

    CAS  PubMed  Google Scholar 

  24. Abd Elgadir, M., Uddin, M. S., Ferdosh, S., Adam, A., Chowdhury, A. J. K., & Sarker, M. Z. I. (2015). Impact of chitosan composites and chitosan nanoparticle composites on various drug delivery systems: A review. Journal of Food and Drug Analysis, 23, 619–629.

    Article  PubMed  Google Scholar 

  25. Ningrum, D. R., Kosasih, W., & Priatni, S. (2018). The comparative study of papain enzyme from papaya fruits California variant and Indonesian local variant. Jurnal Kimia Terapan Indonesia, 19, 42–48.

    Article  Google Scholar 

  26. Mitchel, R. E., Chaiken, I. M., & Smith, E. L. (1970). The complete amino acid sequence of papain: Additions and corrections. Journal of Biological Chemistry, 245, 3485–3492.

    Article  CAS  PubMed  Google Scholar 

  27. Shukla, S. K., Mishra, A. K., Arotiba, O. A., & Mamba, B. B. (2013). Chitosan-based nanomaterials: A state-of-the-art review. International Journal of Biological Macromolecules, 59, 46–58.

    Article  CAS  PubMed  Google Scholar 

  28. Ailincai, D., Morariu, S., Rosca, I., Sandu, A. I., & Marin, L. (2023). Drug delivery based on a supramolecular chemistry approach by using chitosan hydrogels. International Journal of Biological Macromolecules, 248, 125800.

    Article  CAS  PubMed  Google Scholar 

  29. Taokaew, S., Kaewkong, W., & Kriangkrai, W. (2023). Recent development of functional chitosan-based hydrogels for pharmaceutical and biomedical applications. Gels, 9, 277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gan, Q., & Wang, T. (2007). Chitosan nanoparticle as protein delivery carrier—Systematic examination of fabrication conditions for efficient loading and release. Colloids and Surfaces B: Biointerfaces, 59, 24–34.

    Article  CAS  PubMed  Google Scholar 

  31. Gonçalves, A. C. R., Duarte, L. G., Fiocco, A. C. T., Alencar, W. M., Iacuzio, R., Silva, N. C., & Picone, C. S. (2023). Improving chitosan properties through ionic and chemical cross-linking and their impact on emulsified systems. International Journal of Food Science and Technology, 58, 4324–4331.

    Article  Google Scholar 

  32. Lusiana, R. A., Protoningtyas, W. P., Wijaya, A. R., Siswanta, D., & Santosa, S. J. (2017). Chitosan-tripoly phosphate (CS-TPP) synthesis through cross-linking process: The effect of concentration towards membrane mechanical characteristic and urea permeation. Oriental Journal of Chemistry, 33, 2913–2919.

    Article  CAS  Google Scholar 

  33. Bozoğlan, B. K., Duman, O., & Tunç, S. (2020). Preparation and characterization of thermosensitive chitosan/carboxymethylcellulose/scleroglucan nanocomposite hydrogels. International Journal of Biological Macromolecules, 162, 781–797.

    Article  PubMed  Google Scholar 

  34. Mi, F. L., Shyu, S. S., Lee, S. T., & Wong, T. B. (1999). Kinetic study of chitosan-tripolyphosphate complex reaction and acid-resistive properties of the chitosan-tripolyphosphate gel beads prepared by in-liquid curing method. Journal of Polymer Science Part B: Polymer Physics, 37, 1551–1564.

    Article  CAS  Google Scholar 

  35. Tang, Y.-F., Du, Y.-M., Hu, X.-W., Shi, X.-W., & Kennedy, J. F. (2007). Rheological characterisation of a novel thermosensitive chitosan/poly(vinyl alcohol) blend hydrogel. Carbohydrate Polymers, 67, 491–499.

    Article  CAS  Google Scholar 

  36. Hirakura, T., Yasugi, K., Nemoto, T., Sato, M., Shimoboji, T., Aso, Y., Morimoto, N., & Akiyoshi, K. (2010). Hybrid hyaluronan hydrogel encapsulating nanogel as a protein nanocarrier: New system for sustained delivery of protein with a chaperone-like function. Journal of Controlled Release, 142, 483–489.

    Article  CAS  PubMed  Google Scholar 

  37. Bhumkar, D. R., & Pokharkar, V. B. (2006). Studies on effect of pH on cross-linking of chitosan with sodium tripolyphosphate: A technical note. AAPS PharmSciTech, 7, E138–E143.

    Article  PubMed Central  Google Scholar 

  38. Vaezifar, S., Razavi, S., Golozar, M. A., Karbasi, S., Morshed, M., & Kamali, M. (2013). Effects of some parameters on particle size distribution of chitosan nanoparticles prepared by ionic gelation method. Journal of Cluster Science, 24, 891–903.

    Article  CAS  Google Scholar 

  39. Yuan, Q., Shah, J., Hein, S., & Misra, R. (2010). Controlled and extended drug release behavior of chitosan-based nanoparticle carrier. Acta Biomaterialia, 6, 1140–1148.

    Article  CAS  PubMed  Google Scholar 

  40. Osada, Y., & Khokhlov, A. (2001). Polymer gels and networks. CRC Press.

    Book  Google Scholar 

  41. Tarhan, T., Dik, G., Ulu, A., Tural, B., Tural, S., & Ateş, B. (2023). Newly synthesized multifunctional biopolymer coated magnetic core/shell Fe3O4@Au nanoparticles for evaluation of L-asparaginase immobilization. Topics in Catalysis, 66, 577–591.

    Article  CAS  Google Scholar 

  42. Cho, J., Heuzey, M.-C., Bégin, A., & Carreau, P. J. (2005). Physical gelation of chitosan in the presence of β-glycerophosphate: The effect of temperature. Biomacromolecules, 6, 3267–3275.

    Article  CAS  PubMed  Google Scholar 

  43. Pourjavadi, A., Hosseinzadeh, H., & Sadeghi, M. (2007). Synthesis, characterization and swelling behavior of gelatin-g-poly(sodium acrylate)/kaolin superabsorbent hydrogel composites. Journal of Composite Materials, 41, 2057–2069.

    Article  CAS  Google Scholar 

  44. Maleki Dizaj, S., Barzegar-Jalali, M., Zarrintan, M. H., Adibkia, K., & Lotfipour, F. (2015). Calcium carbonate nanoparticles as cancer drug delivery system. Expert Opinion on Drug Delivery, 12, 1649–1660.

    Article  CAS  PubMed  Google Scholar 

  45. Khurma, J. R., & Nand, A. V. (2008). Temperature and pH sensitive hydrogels composed of chitosan and poly(ethylene glycol). Polymer Bulletin, 59, 805–812.

    Article  CAS  Google Scholar 

  46. Kaneko, Y., Nakamura, S., Sakai, K., Aoyagi, T., Kikuchi, A., Sakurai, Y., & Okano, T. (1998). Rapid deswelling response of poly(N-isopropylacrylamide) hydrogels by the formation of water release channels using poly(ethylene oxide) graft chains. Macromolecules, 31, 6099–6105.

    Article  CAS  Google Scholar 

  47. Ghaeini-Hesaroeiye, S., Razmi Bagtash, H., Boddohi, S., Vasheghani-Farahani, E., & Jabbari, E. (2020). Thermoresponsive nanogels based on different polymeric moieties for biomedical applications. Gels, 6, 20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yang, Y., Feng, G., Wang, J., Zhang, R., Zhong, S., Wang, J., & Cui, X. (2023). Injectable chitosan-based self-healing supramolecular hydrogels with temperature and pH dual-responsivenesses. International Journal of Biological Macromolecules, 227, 1038–1047.

    Article  CAS  PubMed  Google Scholar 

  49. Ahmadian, E., Eftekhari, A., Dizaj, S. M., Sharifi, S., Mokhtarpour, M., Nasibova, A. N., Khalilov, R., & Samiei, M. (2019). The effect of hyaluronic acid hydrogels on dental pulp stem cells behavior. International Journal of Biological Macromolecules, 140, 245–254.

    Article  CAS  PubMed  Google Scholar 

  50. Rezaie, J., Akbari, A., Rahimkhoei, V., Lighvani, Z. M., & Jafari, H. (2021). Halloysite nanotubes/carbohydrate-based hydrogels for biomedical applications: From drug delivery to tissue engineering. Polymer Bulletin, 79, 4497–4513.

    Article  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to the research council of Azarbaijan Shahid Madani University for their supportive role during this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Najavand.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jafari, N., Najavand, S., Pazhang, M. et al. Entrapment of Papain in Chitosan–Polyethylene Glycol Hybrid Nanohydrogels: Presenting a Model for Protein Delivery Systems. Mol Biotechnol (2024). https://doi.org/10.1007/s12033-024-01129-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12033-024-01129-2

Keywords

Navigation