Skip to main content

Advertisement

Log in

Integrin β4 Regulates Cell Migration of Lung Adenocarcinoma Through FAK Signaling

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

The role of the integrin family in malignancy has received increasing attention. Many studies have confirmed that ITGB4 could activate multiple signal pathways and promote cell migration in various cancers. However, the regulatory role of integrin β4 (ITGB4) in lung adenocarcinoma (LUAD) is still unclear. Examination of the expression or survival analysis of ITGB4 in cells, pathological samples, and bioinformatics lung adenocarcinoma databases showed ITGB4 was highly expressed in LUAD and significantly associated with poor prognosis. Small interfering RNA and plasmids were performed to investigate the effect of changes in ITGB4 expression on lung adenocarcinoma. Focal adhesion kinase (FAK) inhibitor defactinib was used to further explore the molecular mechanism of ITGB4. The results showed depletion of ITGB4 inhibited migration and activation of FAK signaling pathways in lung adenocarcinoma cells. Moreover, increased ITGB4 expression activated FAK signaling and promoted cell migration, which can be reversed by defactinib. In addition, ITGB4 could interact with FAK in lung adenocarcinoma cells. ITGB4 may promote cell migration of lung adenocarcinoma through FAK signaling pathway and has the potential to be a biomarker for lung adenocarcinoma.

Graphical Abstract

Integrin β4 (ITGB4), Focal adhesion kinase (FAK), The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression and Broad Institute Cancer Cell Line Encyclopedia (CCLE), Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Set Enrichment Analysis (GSEA), and Co- immunoprecipitation (Co-IP).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The datasets collected and analyzed during the study are available in the TCGA, Gene Expression Omnibus (GSE26939 and GSE72094 cohorts), and The Genotype-Tissue Expression and Broad Institute Cancer Cell Line Encyclopedia (CCLE) databases. The other data presented in this study are available on request from the corresponding author. The data are not publicly available due to ethical issues.

References

  1. Thai, A. A., Solomon, B. J., Sequist, L. V., Gainor, J. F., & Heist, R. S. (2021). Lung cancer. The Lancet, 398(10299), 535–554.

    Article  Google Scholar 

  2. Sharma, R. (2022). Mapping of global, regional and national incidence, mortality and mortality-to-incidence ratio of lung cancer in 2020 and 2050. International Journal of Clinical Oncology, 27, 665.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bade, B. C., & Dela Cruz, C. S. (2020). Lung cancer 2020: Epidemiology, etiology, and prevention. Clinics in Chest Medicine, 41(1), 1–24.

    Article  PubMed  Google Scholar 

  4. Tavernari, D., Battistello, E., Dheilly, E., Petruzzella, A. S., Mina, M., Sordet-Dessimoz, J., Peters, S., Krueger, T., Gfeller, D., Riggi, N., Oricchio, E., Letovanec, I., & Ciriello, G. (2021). Nongenetic evolution drives lung adenocarcinoma spatial heterogeneity and progression. Cancer Discovery, 11(6), 1490–1507.

    Article  CAS  PubMed  Google Scholar 

  5. Chalela, R., Curull, V., Enriquez, C., Pijuan, L., Bellosillo, B., & Gea, J. (2017). Lung adenocarcinoma: From molecular basis to genome-guided therapy and immunotherapy. Journal of Thoracic Disease, 9(7), 2142–2158.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Xu, J. Y., Zhang, C., Wang, X., Zhai, L., Ma, Y., Mao, Y., Qian, K., Sun, C., Liu, Z., Jiang, S., Wang, M., Feng, L., Zhao, L., Liu, P., Wang, B., Zhao, X., Xie, H., Yang, X., Zhao, L., … Tan, M. (2020). Integrative proteomic characterization of human lung adenocarcinoma. Cell, 182(1), 245–261.

    Article  CAS  PubMed  Google Scholar 

  7. Oberndorfer, F., & Mullauer, L. (2018). Molecular pathology of lung cancer: Current status and perspectives. Current Opinion in Oncology, 30(2), 69–76.

    Article  CAS  PubMed  Google Scholar 

  8. Chastney, M. R., Conway, J. R. W., & Ivaska, J. (2021). Integrin adhesion complexes. Current Biology, 31(10), R536–R542.

    Article  CAS  PubMed  Google Scholar 

  9. Moreno-Layseca, P., Icha, J., Hamidi, H., & Ivaska, J. (2019). Integrin trafficking in cells and tissues. Nature Cell Biology, 21(2), 122–132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Li, M., Wang, Y., Li, M., Wu, X., Setrerrahmane, S., & Xu, H. (2021). Integrins as attractive targets for cancer therapeutics. Acta Pharmaceutica Sinica B, 11(9), 2726–2737.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Winograd-Katz, S. E., Fassler, R., Geiger, B., & Legate, K. R. (2014). The integrin adhesome: From genes and proteins to human disease. Nature Reviews Molecular Cell Biology, 15(4), 273–288.

    Article  CAS  PubMed  Google Scholar 

  12. Li, J., Hao, N., Han, J., Zhang, M., Li, X., & Yang, N. (2020). ZKSCAN3 drives tumor metastasis via integrin beta4/FAK/AKT mediated epithelial-mesenchymal transition in hepatocellular carcinoma. Cancer Cell International, 20, 216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Li, M., Jiang, X., Wang, G., Zhai, C., Liu, Y., Li, H., Zhang, Y., Yu, W., & Zhao, Z. (2019). ITGB4 is a novel prognostic factor in colon cancer. Journal of Cancer, 10(21), 5223–5233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sung, J. S., Kang, C. W., Kang, S., Jang, Y., Chae, Y. C., Kim, B. G., & Cho, N. H. (2020). ITGB4-mediated metabolic reprogramming of cancer-associated fibroblasts. Oncogene, 39(3), 664–676.

    Article  CAS  PubMed  Google Scholar 

  15. Wilkinson, E. J., Woodworth, A. M., Parker, M., Phillips, J. L., Malley, R. C., Dickinson, J. L., & Holloway, A. F. (2020). Epigenetic regulation of the ITGB4 gene in prostate cancer. Experimental Cell Research, 392(2), 112055.

    Article  CAS  PubMed  Google Scholar 

  16. Zhang, S., Lu, Y., Qi, L., Wang, H., Wang, Z., & Cai, Z. (2020). AHNAK2 is associated with poor prognosis and cell migration in lung adenocarcinoma. BioMed Research International, 2020, 8571932.

    PubMed  PubMed Central  Google Scholar 

  17. Yu, G., Wang, L. G., Han, Y., & He, Q. Y. (2012). clusterProfiler: An R package for comparing biological themes among gene clusters. OMICS: A Journal of Integrative Biology, 16(5), 284–287.

    Article  CAS  PubMed  Google Scholar 

  18. Siegel, R. L., Miller, K. D., Fuchs, H. E., & Jemal, A. (2021). Cancer statistics, 2021. CA: A Cancer Journal for Clinicians, 71(1), 7–33.

    PubMed  Google Scholar 

  19. Popper, H. H. (2016). Progression and metastasis of lung cancer. Cancer and Metastasis Reviews, 35(1), 75–91.

    Article  CAS  PubMed  Google Scholar 

  20. Perlikos, F., Harrington, K. J., & Syrigos, K. N. (2013). Key molecular mechanisms in lung cancer invasion and metastasis: A comprehensive review. Critical Reviews in Oncology Hematology, 87(1), 1–11.

    Article  PubMed  Google Scholar 

  21. Jamil, A., & Kasi, A. (2022). Lung metastasis StatPearls. Treasure Island (FL)

  22. Ruan, S., Lin, M., Zhu, Y., Lum, L., Thakur, A., Jin, R., Shao, W., Zhang, Y., Hu, Y., Huang, S., Hurt, E. M., Chang, A. E., Wicha, M. S., & Li, Q. (2020). Integrin beta4-targeted cancer immunotherapies inhibit tumor growth and decrease metastasis. Cancer Research, 80(4), 771–783.

    Article  CAS  PubMed  Google Scholar 

  23. Li, J., Jiang, Y., Chen, C., Tan, W., Li, P., Chen, G., Peng, Q., & Yin, W. (2020). Integrin beta4 is an effective and efficient marker in synchronously highlighting lymphatic and blood vascular invasion, and perineural aggression in malignancy. American Journal of Surgical Pathology, 44(5), 681–690.

    Article  PubMed  Google Scholar 

  24. Gerson, K. D., Shearstone, J. R., Maddula, V., Seligmann, B. E., & Mercurio, A. M. (2012). Integrin beta4 regulates SPARC protein to promote invasion. Journal of Biological Chemistry, 287(13), 9835–9844.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bierie, B., Pierce, S. E., Kroeger, C., Stover, D. G., Pattabiraman, D. R., Thiru, P., Liu Donaher, J., Reinhardt, F., Chaffer, C. L., Keckesova, Z., & Weinberg, R. A. (2017). Integrin-beta4 identifies cancer stem cell-enriched populations of partially mesenchymal carcinoma cells. Proc Natl Acad Sci USA, 114(12), E2337–E2346.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  26. Masugi, Y., Yamazaki, K., Emoto, K., Effendi, K., Tsujikawa, H., Kitago, M., Itano, O., Kitagawa, Y., & Sakamoto, M. (2015). Upregulation of integrin beta4 promotes epithelial-mesenchymal transition and is a novel prognostic marker in pancreatic ductal adenocarcinoma. Laboratory Investigation, 95(3), 308–319.

    Article  CAS  PubMed  Google Scholar 

  27. Ma, B., Zhang, L., Zou, Y., He, R., Wu, Q., Han, C., & Zhang, B. (2019). Reciprocal regulation of integrin beta4 and KLF4 promotes gliomagenesis through maintaining cancer stem cell traits. Journal of Experimental & Clinical Cancer Research, 38(1), 23.

    Article  Google Scholar 

  28. Choi, S. H., Kim, J. K., Chen, C. T., Wu, C., Marco, M. R., Barriga, F. M., O’Rourke, K., Pelossof, R., Qu, X., Chang, Q., de Stanchina, E., Shia, J., Smith, J. J., Sanchez-Vega, F., & Garcia-Aguilar, J. (2022). KRAS mutants upregulate integrin beta4 to promote invasion and metastasis in colorectal cancer. Molecular Cancer Research, 20(8), 1305–1319.

    Article  CAS  PubMed  Google Scholar 

  29. Khan, M. A., & Tania, M. (2022). Cordycepin and kinase inhibition in cancer. Drug Discovery Today, 28(3), 103481.

    Article  PubMed  Google Scholar 

  30. Xu, B., Lefringhouse, J., Liu, Z., West, D., Baldwin, L. A., Ou, C., Chen, L., Napier, D., Chaiswing, L., Brewer, L. D., St Clair, D., Thibault, O., van Nagell, J. R., Zhou, B. P., Drapkin, R., Huang, J. A., Lu, M. L., Ueland, F. R., & Yang, X. H. (2017). Inhibition of the integrin/FAK signaling axis and c-Myc synergistically disrupts ovarian cancer malignancy. Oncogenesis, 6(1), e295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Leng, C., Zhang, Z. G., Chen, W. X., Luo, H. P., Song, J., Dong, W., Zhu, X. R., Chen, X. P., Liang, H. F., & Zhang, B. X. (2016). An integrin beta4-EGFR unit promotes hepatocellular carcinoma lung metastases by enhancing anchorage independence through activation of FAK-AKT pathway. Cancer Letters, 376(1), 188–196.

    Article  CAS  PubMed  Google Scholar 

  32. Gan, L., Meng, J., Xu, M., Liu, M., Qi, Y., Tan, C., Wang, Y., Zhang, P., Weng, W., Sheng, W., Huang, M., & Wang, Z. (2018). Extracellular matrix protein 1 promotes cell metastasis and glucose metabolism by inducing integrin beta4/FAK/SOX2/HIF-1alpha signaling pathway in gastric cancer. Oncogene, 37(6), 744–755.

    Article  CAS  PubMed  Google Scholar 

  33. Wang, S., Li, J., Xie, J., Liu, F., Duan, Y., Wu, Y., Huang, S., He, X., Wang, Z., & Wu, X. (2018). Programmed death ligand 1 promotes lymph node metastasis and glucose metabolism in cervical cancer by activating integrin beta4/SNAI1/SIRT3 signaling pathway. Oncogene, 37(30), 4164–4180.

    Article  CAS  PubMed  Google Scholar 

  34. Shen, J., Cao, B., Wang, Y., Ma, C., Zeng, Z., Liu, L., Li, X., Tao, D., Gong, J., & Xie, D. (2018). Hippo component YAP promotes focal adhesion and tumour aggressiveness via transcriptionally activating THBS1/FAK signalling in breast cancer. Journal of Experimental & Clinical Cancer Research, 37(1), 175.

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the GEO, TCGA, CCLE, and GTEx databases for free use.

Funding

This work was supported by the Natural Science Foundation of Hebei Province (No. H2021108003).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: SC and ZC; Writing and original draft preparation: SZ, CL, and DL; Data processing and analysis: SZ, CL, XN, HL, and PZ; Immunohistochemistry assays and analysis: SZ, XZ, and YL; Cell and western blot experiments: SZ, CL, DL, and HL; Supervision and project administration: SC and ZC; Review and editing of the manuscript: SC, ZC, and DL.

Corresponding authors

Correspondence to Shubo Chen or Zhigang Cai.

Ethics declarations

Conflict of interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Ethical Approval

The study was approved by the Ethics Committee of affiliated Xing Tai People Hospital of Hebei Medical University. All methods in this study were performed in accordance with the relevant guidelines and regulations. The study is reported in accordance with ARRIVE guidelines.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Liu, C., Liu, D. et al. Integrin β4 Regulates Cell Migration of Lung Adenocarcinoma Through FAK Signaling. Mol Biotechnol (2024). https://doi.org/10.1007/s12033-024-01061-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12033-024-01061-5

Keywords

Navigation