Skip to main content

Advertisement

Log in

Unraveling the Interaction Mechanism of the Compounds From Cladophora sp to Recognize Prospective Larvicidal and Bactericidal Activities: In vitro and In Silico Approaches

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

The present investigation aims to validate the larvicidal and antibacterial potential of Cladophora sp through in vitro and in silico approaches. The presence of phytoconstituents, functional groups and the compounds responsible for antibacterial and larvicidal activity were assessed through FT–IR and GC–MS analyses which unveiled the existence of active secondary metabolites, hydroxyl, alkane and carbonyl groups. The larvicidal and antibacterial activity of algal extract were examined and revealed complete mortality and substantial zone of inhibition was observed against Culex quinquefasciatus and E. coli. To support the in vitro investigation in silico studies were performed. Molecular docking investigations of the selected compounds from GC–MS which exhibited favorable agreement with drug likeness and ADMET properties indicated robust interactions with the larvicidal and bacterial proteins showcasing considerable binding affinities. Notably, 1,2,4-Oxadiazole, 3-(1,3-benzodioxol-5-yl)-5-[(4-iodo-1H-pyrazol-1-yl) methyl]- exhibited strong interactions with the target proteins. Density Functional Theory revealed that the energy gap of the lead compound was reduced and substantiates the occurrence of intermolecular charge transfer. Molecular Dynamic simulations confirms the stability and flexibility of the lead compound. Hence, this investigation offers computational perspectives on the molecular interactions of Cladophora sp, suggesting its suitability as a promising biocontrol agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Priya, S. S., Vasantha-Srinivasan, P., Altemimi, A. B., Keerthana, R., Radhakrishnan, N., Senthil-Nathan, S., Kalaivani, K., Chandrasekar, N., Karthi, S., Ganesan, R., Alkanan, Z. T., Pal, T., Verma, O. P., & Proćków, J. (2023). Bioactive molecules derived from plants in managing dengue vector Aedes aegypti (Linn.). Molecules (Basel, Switzerland), 28(5), 2386.

    Article  CAS  PubMed  Google Scholar 

  2. Carlson, J., Olson, K., Higgs, S., & Beaty, B. (1995). Molecular genetic manipulation of mosquito vectors. Annual review of entomology, 40(1), 359–388.

    Article  CAS  PubMed  Google Scholar 

  3. Meier, C. J., Rouhier, M. F., & Hillyer, J. F. (2022). Chemical control of mosquitoes and the pesticide treadmill: a case for photosensitive insecticides as larvicides. Insects, 13(12), 1093.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Rao, P., Goswami, D., & Rawal, R. M. (2021). Revealing the molecular interplay of curcumin as Culex pipiens Acetylcholine esterase 1 (AChE1) inhibitor. Scientific Reports, 11, 17474.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Debnath, T., Bhowmik, S., Islam, T., & Hassan Chowdhury, M. M. (2018). Presence of multidrug-resistant bacteria on mobile phones of healthcare workers accelerates the spread of nosocomial infection and regarded as a threat to public health in Bangladesh. Journal of microscopy and ultrastructure, 6(3), 165–169.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Khan, F. M., & Gupta, R. (2020). Escherichia coli (E. coli) as an Indicator of Fecal Contamination in Groundwater: A Review. Sustainable Development of Water and Environment: Proceedings of the ICSDWE2020, 225–235.

  7. Nikbakhtzadeh, M. R., & Fuentes, Y. (2022). Deterrent effects of glyphosate on oviposition and larval development of Culex quinquefasciatus. Journal of the American Mosquito Control Association, 38(3), 198–207.

    Article  PubMed  Google Scholar 

  8. Selvam, K., Sudhakar, C., Govarthanan, M., Thiyagarajan, P., Sengottaiyan, A., Senthilkumar, B., & Selvankumar, T. (2017). Eco-friendly biosynthesis and characterization of silver nanoparticles using Tinospora cordifolia (Thunb.) Miers and evaluate its antibacterial, antioxidant potential. Journal of Radiation Research and Applied Sciences, 10(1), 6–12.

    Article  CAS  Google Scholar 

  9. Wang, Y., Zhou, P., Zhou, W., Huang, S., Peng, C., Li, D., & Li, G. (2023). Network analysis indicates microbial assemblage differences in life stages of cladophora. Applied and Environmental Microbiology, 89(3), e02112-e2122.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Cakmak, U., Tuncay, F. O., & Kolcuoğlu, Y. (2022). Cold active α-amylase obtained from Cladophora hutchinsiae-purification, biochemical characterization and some potential applications. Food Bioscience, 50, 102078.

    Article  CAS  Google Scholar 

  11. Holmes, M. J., & Lewis, R. J. (2022). Origin of ciguateric fish: Quantitative modelling of the flow of ciguatoxin through a marine food chain. Toxins, 14(8), 534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Srinithi, R., Sangavi, P., Nachammai, K. T., Kumar, S. G., & Langeswaran, K. (2023). Perspective of algae materials 2.0. In Algae Materials (pp. 383–397). Academic Press. Elsevier

  13. Dussault, D., Vu, K. D., Vansach, T., Horgen, F. D., & Lacroix, M. (2016). Antimicrobial effects of marine algal extracts and cyanobacterial pure compounds against five foodborne pathogens. Food Chemistry, 199, 114–118.

    Article  CAS  PubMed  Google Scholar 

  14. Nachammai, K. T., Ramachandran, S., Nagarajan, C., Kulanthaivel, L., Subbaraj, G. K., Chandrasekaran, K., Paramasivan, V., & Subramanian, S. (2023). Exploration of bioinformatics on microbial fuel cell technology: trends, challenges, and future prospects. Journal of Chemistry, 2023, 1–8.

    Article  Google Scholar 

  15. Magda, F., Deyab, M. A., El-Shanawany, R. S., & Ahmed, S. E. A. (2022). Fatty acids of Cladophora glomerata and Chaetomorpha vieillardii (Cladophoraceae) of different niches inhibit the pathogenic microbial growth. Aquatic Botany, 176, 103461.

    Article  Google Scholar 

  16. Michalak, I., & Messyasz, B. (2021). Concise review of Cladophora spp.: macroalgae of commercial interest. Journal of Applied Phycology, 33(1), 133–166.

    Article  CAS  Google Scholar 

  17. Sindhu, M. S., Poonkothai, M., & Thirumalaisamy, R. (2022). Phenolic and terpene compounds from Plectranthus amboinicus (Lour.) Spreng Act as promising hepatic anticancer agents screened through in silico and in vitro approaches. South African Journal of Botany, 149, 145–159.

    Article  CAS  Google Scholar 

  18. Adusei, S., Otchere, J. K., Oteng, P., Mensah, R. Q., & Tei-Mensah, E. (2019). Phytochemical analysis, antioxidant and metal chelating capacity of Tetrapleura tetraptera. Heliyon. https://doi.org/10.1016/j.heliyon.2019.e02762

    Article  PubMed  PubMed Central  Google Scholar 

  19. Jain, P. K., Soni, A., Jain, P., & Bhawsar, J. (2016). Phytochemical analysis of Mentha spicata plant extract using UV-VIS, FTIR and GC/MS technique. Journal of Chemical and Pharmaceutical Research, 8(2), 1–6.

    Google Scholar 

  20. Bauer, A. W., Kirby, W. M. M., Sherris, J. C., & Turck, M. (1966). Antibiotic susceptibility testing by a standardized single disk method. American Journal of Clinical Pathology, 45, 493–496.

    Article  CAS  PubMed  Google Scholar 

  21. WHO, 2005. World Health Organization: Guidelines for laboratory and field testing of mosquito larvicides. accessed 14 March 2022. https://apps.who.int/iris/handle/10665/69101.

  22. Kamaraj, C., Bagavan, A., Elango, G., Zahir, A. A., Rajakumar, G., Marimuthu, S., Santhoshkumar, T., & Rahuman, A. A. (2011). Larvicidal activity of medicinal plant extracts against Anopheles subpictus & Culex tritaeniorhynchus. The Indian Journal of Medical Research, 134(1), 101.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Hossain, M. A., Saliha, R. A. H., Afaf, M. W., Qasim, A. R., & Jamal, N. S. (2014). Comparison of chemical constituents and in vitro antimicrobial activities of three brands clove essential oils from Gulf region. Asian Pacific Journal of Tropical Disease, 4(4), 262–268. https://doi.org/10.1016/S2222-1808(14)60570-3

    Article  CAS  Google Scholar 

  24. Daina, A., Michielin, O., & Zoete, V. (2017). Swiss ADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(1), 42717.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Trott, O., & Olson, A. J. (2010). Auto Dock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Huey, R., Morris, G. M., & Forli, S. (2012). Using auto dock 4 and auto dock vina with auto dock tools: a tutorial. The Scripps Research Institute Molecular Graphics Laboratory, 10550(92037), 1000.

    Google Scholar 

  27. Rajesh Kumar, T., Premkumar, R., Langeswaran, K., Ramavenkateswari, K., Anitha, S., Sangavi, P., & Sangeetha, R. (2023). Virtual screening, molecular docking, molecular dynamics and quantum chemical studies on (2-methoxy-4-prop-2-enylphenyl) N-(2-methoxy-4-nitrophenyl) carbamate: a novel inhibitor of hepatocellular carcinoma. Journal of Biomolecular Structure and Dynamics, 1–10.

  28. Anitha, S., Saranya, V., Shankar, R., & Sasirekha, V. (2022). Structural exploration of interactions of (+) catechin and (−) epicatechin with bovine serum albumin: Insights from molecular dynamics and spectroscopic methods. Journal of Molecular Liquids, 348, 118026.

    Article  Google Scholar 

  29. Bochevarov, A. D., Harder, E., Hughes, T. F., Greenwood, J. R., Braden, D. A., Philipp, D. M., & Friesner, R. A. (2013). Jaguar: A high-performance quantum chemistry software program with strengths in life and materials sciences. International Journal of Quantum Chemistry, 113(18), 2110–2142.

    Article  CAS  Google Scholar 

  30. Schrödinger Release 2023–1: Jaguar, Schrödinger, LLC, New York, NY, 2021.

  31. Sangavi, P., Langeswaran, K., & Sangeetha, R. (2022). Identification and validation of hydroxychavicol from betel leaf as a promising breast cancer inhibitor: An In vitro and In silico analysis. Current Enzyme Inhibition, 18(2), 127–134.

    Article  CAS  Google Scholar 

  32. Banerjee, P., Eckert, A. O., Schrey, A. K., & Preissner, R. (2018). ProTox-II: A webserver for the prediction of toxicity of chemicals. Nucleic acids research, 46(W1), W257–W263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sangeetha, R., Prabha, A. Y. J. E., Lakshmi, A., Sangavi, P., & Langeswaran, K. (2022). Molecular docking and dynamic simulations of Ocimumbasilicum compounds against HCC and structural, vibrational, quantum, and chemical investigation of campesterol. Journal of Biomolecular Structure and Dynamics, 40(24), 13997–14012.

    Article  CAS  PubMed  Google Scholar 

  34. Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., & Berendsen, H. J. (2005). GROMACS: Fast, flexible, and free. Journal of computational chemistry, 26(16), 1701–1718.

    Article  PubMed  Google Scholar 

  35. Schüttelkopf, A. W., & Van Aalten, D. M. (2004). PRODRG: A tool for high-throughput crystallography of protein–ligand complexes. Acta Crystallographica Section D: Biological Crystallography, 60(8), 1355–1363.

    Article  PubMed  Google Scholar 

  36. Kirubhanand, C., Leonora, J. M., Anitha, S., Sangeetha, R., Nachammai, K. T., Langeswaran, K., & Kumar, S. G. (2023). Targeting potential receptor molecules in non-small cell lung cancer (NSCLC) using in silico approaches. Frontiers in Molecular Biosciences. https://doi.org/10.3389/fmolb.2023.1124563

    Article  PubMed  PubMed Central  Google Scholar 

  37. Sangavi, P., & Langeswaran, K. (2021). Anti-tumorigenic efficacy of tangeret in in liver cancer-an in-silico approach. Current Computer-Aided Drug Design, 17(3), 337–343.

    Article  CAS  Google Scholar 

  38. Turner, P. J. (2005). XMGRACE, Version 5.1. 19. Center for Coastal and Land-Margin Research, Oregon Graduate Institute of Science and Technology, Beaverton, OR2.

  39. Sangeetha, R., Prabha, A. Y. J. E., Lakshmi, A., Sangavi, P., & Langeswaran, K. (2022). Molecular docking and dynamic simulations of Ocimum basilicum compounds against HCC and structural, vibrational, quantum, and chemical investigation of campesterol. Journal of Biomolecular Structure and Dynamics, 40(24), 13997–14012.

    Article  CAS  PubMed  Google Scholar 

  40. Raguraman, V., Stanley, A. L., MubarakAli, D., Narendrakumar, G., Thirugnanasambandam, R., Kirubagaran, R., & Thajuddin, N. (2018). Unraveling rapid extraction of fucoxanthin from Padina tetrastromatica: Purification, characterization and biomedical application. Process Biochemistry, 2018(73), 211–219.

    Article  Google Scholar 

  41. Kang, O., Brice, O., Lee, Y., & Chae, H. (2010). Antibacterial activity of Ecklonia cava against. Foodborne Pathogens and Disease, 7, 435–441.

    Article  PubMed  Google Scholar 

  42. Qiu, S., Sun, H., Zhang, A. H., Xu, H. Y., Yan, G. L., Han, Y., & Wang, X. J. (2014). Natural alkaloids: basic aspects, biological roles, and future perspectives. Chinese Journal of Natural Medicines, 12(6), 401–406. https://doi.org/10.1016/S1875-5364(14)60063-7

    Article  CAS  PubMed  Google Scholar 

  43. Panche, A. N., Diwan, A. D., & Chandra, S. R. (2016). Flavonoids: an overview. Journal of Nutritional Science. https://doi.org/10.1017/jns.2016.41

    Article  PubMed  PubMed Central  Google Scholar 

  44. Harith, S. S., Mohd, S. N. A. S., Aziz, N. A., Mydin, M. M., & Nasir, N. T. S. (2018). Phytochemical screening and larvicidal activity of Murraya koenigii leaves extracts against mosquito larvae. Malaysian Journal of Analytical Sciences, 22(3), 471–476. https://doi.org/10.17576/mjas-2018-2203-14

    Article  Google Scholar 

  45. Wina, E., Muetzel, S., Hoffmann, E., Makkar, H. P. S., & Becker, K. (2005). Saponins containing methanol extract of Sapindus rarak affect microbial fermentation, microbial activity and microbial community structure in vitro. Animal Feed Science and Technology, 121(1–2), 159–174. https://doi.org/10.1016/j.anifeedsci.2005.02.016

    Article  CAS  Google Scholar 

  46. Li, Y. M. S. Q., Sun, Q., Zhou, Z., Qin, J. X., Tao, J., Wang, J., & Fang, X. (2004). Identification of American ginseng from different regions using FT-IR and two-dimensional correlation IR spectroscopy. Vibrational Spectroscopy, 36, 227232.

    Article  Google Scholar 

  47. Lomartire, S., & Gonçalves, A. M. M. (2023). An overview on antimicrobial potential of edible terrestrial plants and marine macroalgae rhodophyta and chlorophyta extracts. Marine Drugs, 21(3), 163. https://doi.org/10.3390/md21030163.PMID:36976212;PMCID:PMC10058896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zablotowicz, R. M., Hoagland, R. E., & Wagner, S. C. (1996). Effect of saponins on the growth and activity of rhizosphere bacteria. Advances in Experimental Medicine and Biology., 405, 83–95.

    Article  CAS  PubMed  Google Scholar 

  49. Delcour, A. H. (2009). Outer membrane permeability and antibiotic resistance. Biochimica et Biophysica Acta., 1794(5), 808–816. https://doi.org/10.1016/j.bbapap.2008.11.005

    Article  CAS  PubMed  Google Scholar 

  50. Kuniyoshi, M., Yamada, K., & Higa, T. (1985). A biologically active Diphenyl ether from the green alga Cladophora fascicularis. Experientia, 41(1985), 523–524.

    Article  CAS  Google Scholar 

  51. Al-Saif, S. S. A. L., Abdel-Raouf, N., El-Wazanani, H. A., & Aref, I. A. (2014). Antibacterial substances from marine algae isolated from Jeddah coast of Red sea, Saudi Arabia. Saudi Journal of Biological Sciences, 21(1), 57–64.

    Article  CAS  PubMed  Google Scholar 

  52. Kirubakaran, N., Sathappan, S., & Sundaram, J. (2021). Larvicidal activity of Acorus calamus leaf extracts against the Aedes aegypti and Culex quinquefasciatus. 12(3), 375 – 383

  53. Benelli, G. (2015). Research in mosquito control: Current challenges for a brighter future. Parasitology Research, 114(8), 2801–2805.

    Article  PubMed  Google Scholar 

  54. Pavela, R., & Benelli, G. (2016). Essential oils as ecofriendly biopesticides? Challenges and constraints. Trends in Plant Science, 21(12), 1000–1007.

    Article  CAS  PubMed  Google Scholar 

  55. Rattan, R. S. (2010). Mechanism of action of insecticidal secondary metabolites of plant origin. Crop Protection, 29(9), 913–920.

    Article  CAS  Google Scholar 

  56. Moyes, C. L., Vontas, J., Martins, A. J., Ng, L. C., Koou, S. Y., Dusfour, I., Raghavendra, K., Pinto, J., Corbel, V., David, J.-P., & Weetman, D. (2017). Contemporary status of insecticide resistance in the major Aedes vectors of arboviruses infecting humans. PLoS Neglected Tropical Diseases, 11(7), e0005625.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Yu, K. X., Wong, C. L., Ahmad, R., & Jantan, I. (2015). Larvicidal activity, inhibition effect on development, histopathological alteration and morphological aberration induced by seaweed extracts in Aedes aegypti (Diptera: Culicidae). Asian Pacific Journal of Tropical Medicine, 8(12), 1006–1012.

    Article  PubMed  Google Scholar 

  58. Gowthish, K., & Kannan, R. (2019). Pesticidal potentials of some red algal seaweeds from Tuticorin coast against the tobacco cutworm Spodoptera litura Fab. (Lepidoptera: Noctuidae). International Journal of Scientific & Technology Research, 8(10), 502–506.

    Google Scholar 

  59. Lipinski, C. A. (2004). Lead-and drug-like compounds: The rule-of-five revolution. Drug Discovery Today: Technologies, 1(4), 337–341.

    Article  CAS  PubMed  Google Scholar 

  60. Ghose, A. K., Viswanadhan, V. N., & Wendoloski, J. J. (1999). A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases. Journal of Combinatorial Chemistry, 1(1), 55–68.

    Article  CAS  PubMed  Google Scholar 

  61. Veber, D. F., Johnson, S. R., Cheng, H. Y., Smith, B. R., Ward, K. W., & Kopple, K. D. (2002). Molecular properties that influence the oral bioavailability of drug candidates. Journal of Medicinal Chemistry, 45(12), 2615–2623.

    Article  CAS  PubMed  Google Scholar 

  62. Egan, W. J., Merz, K. M., & Baldwin, J. J. (2000). Prediction of drug absorption using multivariate statistics. Journal of Medicinal Chemistry, 43(21), 3867–3877.

    Article  CAS  PubMed  Google Scholar 

  63. Muegge, I., Heald, S. L., & Brittelli, D. (2001). Simple selection criteria for drug-like chemical matter. Journal of Medicinal Chemistry, 44(12), 1841–1846.

    Article  CAS  PubMed  Google Scholar 

  64. Jia, C. Y., Li, J. Y., Hao, G. F., & Yang, G. F. (2020). A drug-likeness toolbox facilitates ADMET study in drug discovery. Drug Discovery Today, 25(1), 248–258.

    Article  CAS  PubMed  Google Scholar 

  65. Sugita, M., Sugiyama, S., Fujie, T., Yoshikawa, Y., Yanagisawa, K., Ohue, M., & Akiyama, Y. (2021). Large-scale membrane permeability prediction of cyclic peptides crossing a lipid bilayer based on enhanced sampling molecular dynamics simulations. Journal of Chemical Information and Modeling, 61(7), 3681–3695.

    Article  CAS  PubMed  Google Scholar 

  66. Chandrasekaran, B., Abed, S. N., Al-Attraqchi, O., Kuche, K., Tekade, R. K. (2018). Computer-aided prediction of pharmacokinetic (ADMET) properties. Dosage form Design Parameters, 2018. Academic Press, pp. 731–755.

  67. Pricopie, A. I., Ionuț, I., Marc, G., Arseniu, A. M., Vlase, L., Grozav, A., Găină, L. L., Vodnar, D. C., Pîrnău, A., Tiperciuc, B., & Oniga, O. (2019). Design and synthesis of novel 1, 3-thiazole and 2-hydrazinyl-1, 3-thiazole derivatives as anti-Candida agents: In vitro antifungal screening, molecular docking study, and spectroscopic investigation of their binding interaction with bovine serum albumin. Molecules, 24(19), 3435.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Ntie-Kang, F., Lifongo, L. L., Mbah, J. A., Owono Owono, L. C., Megnassan, E., Mbaze, L. M. A., Judson, P. N., Sippl, W., & Efange, S. M. (2013). In silico drug metabolism and pharmacokinetic profiles of natural products from medicinal plants in the Congo basin. In Silico Pharmacology, 1, 1–11.

    Article  Google Scholar 

  69. Van De Waterbeemd, H., & Gifford, E. (2003). ADMET in silico modelling: Towards prediction paradise? Nature Reviews Drug Discovery, 2(3), 192–204.

    Article  PubMed  Google Scholar 

  70. Wang, Z., Yang, H., Wu, Z., Wang, T., Li, W., Tang, Y., & Liu, G. (2018). In silico prediction of blood–brain barrier permeability of compounds by machine learning and resampling methods. ChemMedChem, 13(20), 2189–2201.

    Article  CAS  PubMed  Google Scholar 

  71. Issa, T. N., Wathieu, H., Ojo, A., Byers, W. S., & Dakshanamurthy, S. (2017). Drug metabolism in preclinical drug development: a survey of the discovery process, toxicology, and computational tools. Current Drug Metabolism, 18(6), 556–565.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Li, A. P. (2001). Screening for human ADME/Tox drug properties in drug discovery. Drug Discovery Today, 6(7), 357–366.

    Article  CAS  PubMed  Google Scholar 

  73. Guengerich, F. P. (1999). Cytochrome P-450 3A4: Regulation and role in drug metabolism. Annual Review of Pharmacology and Toxicology, 39(1), 1–17.

    Article  CAS  PubMed  Google Scholar 

  74. Williams, P. A., Cosme, J., Ward, A., Angove, H. C., Matak Vinković, D., & Jhoti, H. (2003). Crystal structure of human cytochrome P450 2C9 with bound warfarin. Nature, 424(6947), 464–468.

    Article  CAS  PubMed  Google Scholar 

  75. Lagorce, D., Douguet, D., Miteva, M. A., & Villoutreix, B. O. (2017). Computational analysis of calculated physicochemical and ADMET properties of protein-protein interaction inhibitors. Scientific Reports, 7(1), 46277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Berellini, G., Waters, N. J., & Lombardo, F. (2012). In silico prediction of total human plasma clearance. Journal of Chemical Information and Modeling, 52(8), 2069–2078.

    Article  CAS  PubMed  Google Scholar 

  77. Martin, Y. C. (2005). A bioavailability score. Journal of Medicinal Chemistry, 48(9), 3164–3170.

    Article  CAS  PubMed  Google Scholar 

  78. Mohapatra, R. K., Dhama, K., El-Arabey, A. A., Sarangi, A. K., Tiwari, R., Emran, T. B., Azam, M., Al-Rasayes, S. I., Raval, M. K., Seidel, V., & Abdalla, M. (2021). Repurposing benzimidazole and benzothiazole derivatives as potential inhibitors of SARS-CoV-2: DFT, QSAR, molecular docking, molecular dynamics simulation, and in-silico pharmacokinetic and toxicity studies. Journal of King Saud University-Science, 33(8), 101637.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Van Ogtrop, M. L., Mattie, H., Sekh, B. R., Van Strijen, E., & Van Furth, R. (1992). Comparison of the antibacterial efficacies of ampicillin and ciprofloxacin against experimental infections with Listeria monocytogenes in hydrocortisone-treated mice. Antimicrobial Agents and Chemotherapy, 36(11), 2375–2380.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Lawler, S. P. (2017). Environmental safety review of methoprene and bacterially-derived pesticides commonly used for sustained mosquito control. Ecotoxicology and Environmental Safety, 139, 335–343.

    Article  CAS  PubMed  Google Scholar 

  81. Ford, N., Vitoria, M., Rangaraj, A., Norris, S. L., Calmy, A., & Doherty, M. (2020). Systematic review of the efficacy and safety of antiretroviral drugs against SARS, MERS or COVID-19: Initial assessment. Journal of the International AIDS Society, 23(4), e25489.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Alov, P., Tsakovska, I., & Pajeva, I. (2015). Computational studies of free radical-scavenging properties of phenolic compounds. Current Topics in Medicinal Chemistry, 15(2), 85–104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Çinar, M. (2022). A combined 3D-QSAR, pharmacophore modelling, and molecular docking study for plastoquinone analogues. Eastern Anatolian Journal of Science, 8(2), 6–30.

    Google Scholar 

  84. Jayaprakash, P., Biswal, J., Rangaswamy, R., & Jeyakanthan, J. (2022). Designing of potent anti-diabetic molecules by targeting SIK2 using computational approaches. Molecular Diversity, 1–21.

  85. Chinnasamy, S., Nagamani, S., & Muthusamy, K. (2015). Zn 2+ ion of the snake venom metalloproteinase (SVMP) plays a critical role in ligand binding: A molecular dynamics simulation study. RSC Advances, 5(86), 70566–70576.

    Article  CAS  Google Scholar 

  86. Banerjee, P., & Ulker, O. C. (2022). Combinative ex vivo studies and in silico models ProTox-II for investigating the toxicity of chemicals used mainly in cosmetic products. Toxicology Mechanisms and Methods, 32(7), 542–548.

    Article  CAS  PubMed  Google Scholar 

  87. Zhao, D., Li, L., He, D., & Zhou, J. (2016). Molecular dynamics simulations of conformation changes of HIV-1 regulatory protein on graphene. Applied Surface Science, 377, 324–334.

    Article  CAS  Google Scholar 

  88. Raman, L. S., Shanmuganathan, A., Chandrashekar, S., Kaliyaperumal, P., Perumal, E., Mudiganti, R. K. R., & Subramanian, S. (2023). Antioxidant, anti-inflammatory, and anticarcinogenic efficacy of an ayurvedic formulation: Amritotharanam kashyam. Advances in Pharmacological and Pharmaceutical Sciences, 2023, 1–13.

    Article  Google Scholar 

  89. Yu, H., Wang, M. J., Xuan, N. X., Shang, Z. C., & Wu, J. (2015). Molecular dynamics simulation of the interactions between EHD1 EH domain and multiple peptides. Journal of Zhejiang University Science B, 16(10), 883–896.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Bharadwaj, K. K., Ahmad, I., Pati, S., Ghosh, A., Sarkar, T., Rabha, B., & Wan Rosli, W. I. (2022). Potent bioactive compounds from seaweed waste to combat cancer through bioinformatics investigation. Frontiers in Nutrition, 9, 889276.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors wish to place their thanks to the authorities and management of Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore and Alagappa University, Karaikudi for the successful conduct of the study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Poonkothai or K. Langeswaran.

Ethics declarations

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nachammai, K.T., Amaradeepa, S., Raageshwari, S. et al. Unraveling the Interaction Mechanism of the Compounds From Cladophora sp to Recognize Prospective Larvicidal and Bactericidal Activities: In vitro and In Silico Approaches. Mol Biotechnol (2023). https://doi.org/10.1007/s12033-023-00902-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12033-023-00902-z

Keywords

Navigation