Skip to main content

Advertisement

Log in

Bioinformatics Analysis of miR-181a and Its Role in Adipogenesis, Obesity, and Lipid Metabolism Through Review of Literature

  • Review Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

The miRNAs regulate various biological processes in the mammalian body system. The role of miR-181a in the development, progression, and expansion of cancers is well-documented. However, the role of miR-181a in adipogenesis; lipid metabolism; obesity; and obesity-related issues such as diabetes mellitus needs to be explored. Therefore, in the present study, the literature was searched and bioinformatics tools were applied to explore the role of miR-181a in adipogenesis. The list of adipogenic and lipogenic target genes validated through different publications were extracted and compiled. The network and functional analysis of these target genes was performed through in-silico analysis. The mature sequence of miR-181a of different species were extracted from and were found highly conserved among the curated species. Additionally, we also used various bioinformatics tools such as target gene extraction from Targetscan, miRWalk, and miRDB, and the list of the target genes from these different databases was compared, and common target genes were predicted. These common target genes were further subjected to the enrichment score and KEGG pathways analysis. The enrichment score of the vital KEGG pathways of the target genes is the key regulator of adipogenesis, lipogenesis, obesity, and obesity-related syndromes in adipose tissues. Therefore, the information presented in the current review will explore the regulatory roles of miR-181a in fat tissues and its associated functions and manifestations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All data are available within the manuscript.

References

  1. Florian, I. A., Buruiana, A., Timis, T. L., Susman, S., Florian, I. S., Balasa, A., & Berindan-Neagoe, I. (2021). An Insight into the microRNAs Associated with arteriovenous and cavernous malformations of the brain. Cells. https://doi.org/10.3390/cells10061373

    Article  PubMed  PubMed Central  Google Scholar 

  2. Geng, X., Mao, G., Zhao, D., Xiang, Y., Wang, M., Yu, G., & Tan, L. (2022). Downregulation of miR-33a/b and miR-181a contributes to recurrent pregnancy loss by upregulating S1PR1 and repressing regulatory T cell differentiation. Placenta, 121, 137–144. https://doi.org/10.1016/j.placenta.2022.03.011

    Article  CAS  PubMed  Google Scholar 

  3. Yuan, P., Fan, S., Zhai, B., Li, Y., Li, S., Li, H., Zhang, H., Zhang, Y., Han, R., Tian, Y., et al. (2022). miR-181a-5p can inhibit the proliferation and promote the differentiation of chicken primary myoblasts. British Poultry Science, 63, 813–820. https://doi.org/10.1080/00071668.2022.2102891

    Article  CAS  PubMed  Google Scholar 

  4. He, M., Zhang, W., Wang, S., Ge, L., Cao, X., Wang, S., Yuan, Z., Lv, X., Getachew, T., Mwacharo, J. M., et al. (2022). MicroRNA-181a regulates the proliferation and differentiation of Hu sheep skeletal muscle satellite cells and targets the YAP1 gene. Genes (Basel). https://doi.org/10.3390/genes13030520

    Article  PubMed  PubMed Central  Google Scholar 

  5. Chen, S., Wang, C., Chen, Q., Zhao, D., Liu, Y., Zhao, S., Fu, S., He, X., Yang, B., Zhao, Q., et al. (2022). Downregulation of three novel miRNAs in the lymph nodes of sheep immunized with the Brucella suis strain 2 vaccine. Front Vet Sci, 9, 813170. https://doi.org/10.3389/fvets.2022.813170

    Article  PubMed  PubMed Central  Google Scholar 

  6. Edgünlü, T. G., Yılmaz, ŞG., Emre, U., Taşdelen, B., Kuru, O., Kutlu, G., & Erdal, M. E. (2022). miR-181a-5p is a potential candidate epigenetic biomarker in multiple sclerosis. Genome, 65, 547–561. https://doi.org/10.1139/gen-2022-0040

    Article  CAS  PubMed  Google Scholar 

  7. Wu, Z., Zhang, Z., Wang, Z., Zhu, H., & Li, M. (2022). MiR-181a-5p alleviates the inflammatory response of PC12 cells by inhibiting high-mobility group box-1 protein expression. World Neurosurg, 162, e427–e435. https://doi.org/10.1016/j.wneu.2022.03.025

    Article  PubMed  Google Scholar 

  8. Li, W., Wang, X., Sun, S., & An, H. (2021). Long non-coding RNA colorectal neoplasia differentially expressed correlates negatively with miR-33a and miR-495 and positively with inflammatory cytokines in asthmatic children. The Clinical Respiratory Journal, 15, 1175–1184. https://doi.org/10.1111/crj.13424

    Article  CAS  PubMed  Google Scholar 

  9. Lecchi, C., Dalla Costa, E., Lebelt, D., Ferrante, V., Canali, E., Ceciliani, F., Stucke, D., & Minero, M. (2018). Circulating miR-23b-3p, miR-145-5p and miR-200b-3p are potential biomarkers to monitor acute pain associated with laminitis in horses. Animal, 12, 366–375. https://doi.org/10.1017/s1751731117001525

    Article  CAS  PubMed  Google Scholar 

  10. Li, S., Zhu, P., Wang, Y., Huang, S., Wu, Z., He, J., Hu, X., Wang, Y., Yuan, Y., Zhao, B., et al. (2023). miR-181a targets PTEN to mediate the neuronal injury caused by oxygen-glucose deprivation and reoxygenation. Metabolic Brain Disease. https://doi.org/10.1007/s11011-023-01219-1,doi:10.1007/s11011-023-01219-1

    Article  PubMed  Google Scholar 

  11. Sun, Q., Ma, L., Qiao, J., Wang, X., Li, J., Wang, Y., Tan, A., Ye, Z., Wu, Y., Xi, J., et al. (2023). MiR-181a-5p promotes neural stem cell proliferation and enhances the learning and memory of aged mice. Aging Cell, 22, e13794. https://doi.org/10.1111/acel.13794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Long, Z., Dou, P., Cai, W., Mao, M., & Wu, R. (2023). MiR-181a-5p promotes osteogenesis by targeting BMP3. Aging, 15, 734–747. https://doi.org/10.18632/aging.204505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Huang, Y., Zhang, Y., Zhou, Y., Chen, Y., & Zhu, Q. (2023). CDKN2B-AS1 is overexpressed in polycystic ovary syndrome and sponges miR-181a to promote granulosa cell proliferation. Anti-Cancer Drugs, 34, 207–213. https://doi.org/10.1097/cad.0000000000001405

    Article  CAS  PubMed  Google Scholar 

  14. Huang, L., Shi, Y., Hu, J., Ding, J., Guo, Z., & Yu, B. (2022). Integrated analysis of mRNA-seq and miRNA-seq reveals the potential roles of Egr1, Rxra and Max in kidney stone disease. Urolithiasis, 51, 13. https://doi.org/10.1007/s00240-022-01384-5

    Article  CAS  PubMed  Google Scholar 

  15. Wang, Y.; Tu, S.; Huang, Y.; Qin, K.; Chen, Z. MicroRNA-181a regulates Treg functions via TGF-β1/Smad axis in the spleen of mice with acute gouty arthritis induced by MSU crystals. Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas 2022, 55: e12002, https://doi.org/10.1590/1414-431X2022e12002.

  16. Tunçer, F., Şahiner, Ü. M., Ocak, M., Ünsal, H., Soyer, Ö., Şekerel, B. E., & Birben, E. (2022). Comparison of miRNA expression in patients with seasonal and perennial allergic rhinitis and non-atopic asthma. The Turkish Journal of Pediatrics, 64, 859–868. https://doi.org/10.24953/turkjped.2022.410

    Article  PubMed  Google Scholar 

  17. Guan, R., Zeng, K., Zhang, B., Gao, M., Li, J., Jiang, H., Liu, Y., Qiang, Y., Liu, Z., Li, J., et al. (2022). Plasma exosome miRNAs profile in patients With ST-segment elevation myocardial infarction. Frontiers in Cardiovascular Medicine, 9, 848812. https://doi.org/10.3389/fcvm.2022.848812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Khatami, A., Taghizadieh, M., Sadri Nahand, J., Karimzadeh, M., Kiani, S. J., Khanaliha, K., Kalantari, S., Chavoshpour, S., Mirzaei, H., & Donyavi, T. (2023). Evaluation of MicroRNA Expression Pattern (miR-28, miR-181a, miR-34a, and miR-31) in patients with COVID-19 admitted to ICU and diabetic COVID-19 patients. Intervirology, 66, 63–76.

    Article  PubMed  Google Scholar 

  19. Carrella, S., Di Guida, M., Brillante, S., Piccolo, D., Ciampi, L., Guadagnino, I., Garcia Piqueras, J., Pizzo, M., Marrocco, E., Molinari, M., et al. (2022). miR-181a/b downregulation: A mutation-independent therapeutic approach for inherited retinal diseases. EMBO Molecular Medicine, 14, e15941. https://doi.org/10.15252/emmm.202215941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhuo, Y., Chen, W., Li, W., Huang, Y., Duan, D., Ge, L., He, J., Liu, J., Hu, Z., & Lu, M. (2021). Ischemic-hypoxic preconditioning enhances the mitochondrial function recovery of transplanted olfactory mucosa mesenchymal stem cells via miR-181a signaling in ischemic stroke. Aging, 13, 11234–11256. https://doi.org/10.18632/aging.202807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wong, R. S. (2011). Apoptosis in cancer: From pathogenesis to treatment. Journal of Experimental & Clinical Cancer Research, 30, 1–14.

    Article  Google Scholar 

  22. Lee, Y. S., & Dutta, A. (2009). MicroRNAs in cancer. Annual Review of Pathology, 4, 199–227. https://doi.org/10.1146/annurev.pathol.4.110807.092222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Su, R., Lin, H. S., Zhang, X. H., Yin, X. L., Ning, H. M., Liu, B., Zhai, P. F., Gong, J. N., Shen, C., Song, L., et al. (2015). MiR-181 family: Regulators of myeloid differentiation and acute myeloid leukemia as well as potential therapeutic targets. Oncogene, 34, 3226–3239. https://doi.org/10.1038/onc.2014.274

    Article  CAS  PubMed  Google Scholar 

  24. Su, Y., Yuan, J., Zhang, F., Lei, Q., Zhang, T., Li, K., Guo, J., Hong, Y., Bu, G., Lv, X., et al. (2019). MicroRNA-181a-5p and microRNA-181a-3p cooperatively restrict vascular inflammation and atherosclerosis. Cell Death & Disease, 10, 365. https://doi.org/10.1038/s41419-019-1599-9

    Article  CAS  Google Scholar 

  25. Bell-Hensley, A., Das, S., & McAlinden, A. (2023). The miR-181 family: Wide-ranging pathophysiological effects on cell fate and function. Journal of Cellular Physiology, 238(4), 698–713.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sethi, J. K., & Vidal-Puig, A. J. (2007). Thematic review series: adipocyte biology. Adipose tissue function and plasticity orchestrate nutritional adaptation. Journal of Lipid Research, 48, 1253–1262.

    Article  CAS  PubMed  Google Scholar 

  27. Rutkowski, J. M., Stern, J. H., & Scherer, P. E. (2015). The cell biology of fat expansion. Journal of Cell Biology, 208, 501–512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hirschmugl, B., Brandl, W., Csapo, B., van Poppel, M., Köfeler, H., Desoye, G., Wadsack, C., & Jantscher-Krenn, E. (2019). Evidence of human milk oligosaccharides in cord blood and maternal-to-fetal transport across the placenta. Nutrients. https://doi.org/10.3390/nu11112640

    Article  PubMed  PubMed Central  Google Scholar 

  29. Khan, R., Raza, S. H. A., Junjvlieke, Z., Xiaoyu, W., Garcia, M., Elnour, I. E., Hongbao, W., & Linsen, Z. (2019). Function and Transcriptional Regulation of Bovine TORC2 Gene in Adipocytes: Roles of C/EBPγ, XBP1, INSM1 and ZNF263. International Journal of Molecular Sciences, 20, 4338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ahn, J., Lee, H., Jung, C. H., Jeon, T. I., & Ha, T. Y. (2013). MicroRNA-146b promotes adipogenesis by suppressing the SIRT1-FOXO1 cascade. EMBO Molecular Medicine, 5, 1602–1612. https://doi.org/10.1002/emmm.201302647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ambros, V. (2004). The functions of animal microRNAs. Nature, 431, 350–350.

    Article  CAS  PubMed  Google Scholar 

  32. Sun, T., Fu, M., Bookout, A. L., Kliewer, S. A., & Mangelsdorf, D. J. (2009). MicroRNA let-7 regulates 3T3-L1 adipogenesis. Molecular Endocrinology (Baltimore, Md), 23, 925–931. https://doi.org/10.1210/me.2008-0298

    Article  CAS  PubMed  Google Scholar 

  33. Xie, X., Song, J., & Li, G. (2016). MiR-21a-5p suppresses bisphenol A-induced pre-adipocyte differentiation by targeting map2k3 through MKK3/p38/MAPK. Biochemical and Biophysical Research Communications, 473, 140–146. https://doi.org/10.1016/j.bbrc.2016.03.066

    Article  CAS  PubMed  Google Scholar 

  34. Huang, Y., Huang, J., Qi, R., Wang, Q., Wu, Y., & Wang, J. (2016). Effects of MicroRNA-23a on differentiation and gene expression profiles in 3T3-L1 adipocytes. Genes. https://doi.org/10.3390/genes7100092

    Article  PubMed  PubMed Central  Google Scholar 

  35. Shen, L., Zhang, Y., Du, J., Chen, L., Luo, J., Li, X., Li, M., Tang, G., Zhang, S., & Zhu, L. (2016). MicroRNA-23a regulates 3T3-L1 adipocyte differentiation. Gene, 575, 761–764. https://doi.org/10.1016/j.gene.2015.09.060

    Article  CAS  PubMed  Google Scholar 

  36. Kang, T., Lu, W., Xu, W., Anderson, L., Bacanamwo, M., Thompson, W., Chen, Y. E., & Liu, D. (2013). MicroRNA-27 (miR-27) targets prohibitin and impairs adipocyte differentiation and mitochondrial function in human adipose-derived stem cells. The Journal of Biological Chemistry, 288, 34394–34402. https://doi.org/10.1074/jbc.M113.514372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lin, Q., Gao, Z., Alarcon, R. M., Ye, J., & Yun, Z. (2009). A role of miR-27 in the regulation of adipogenesis. The FEBS Journal, 276, 2348–2358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lee, E. K., Lee, M. J., Abdelmohsen, K., Kim, W., Kim, M. M., Srikantan, S., Martindale, J. L., Hutchison, E. R., Kim, H. H., Marasa, B. S., et al. (2011). miR-130 suppresses adipogenesis by inhibiting peroxisome proliferator-activated receptor gamma expression. Molecular and Cellular Biology, 31, 626–638. https://doi.org/10.1128/MCB.00894-10

    Article  CAS  PubMed  Google Scholar 

  39. Ning, C., Li, G., You, L., Ma, Y., Jin, L., Ma, J., Li, X., Li, M., & Liu, H. (2017). MiR-185 inhibits 3T3-L1 cell differentiation by targeting SREBP-1. Bioscience, Biotechnology, and Biochemistry, 81, 1747–1754. https://doi.org/10.1080/09168451.2017.1347485

    Article  CAS  PubMed  Google Scholar 

  40. Kinoshita, M., Ono, K., Horie, T., Nagao, K., Nishi, H., Kuwabara, Y., Takanabe-Mori, R., Hasegawa, K., Kita, T., & Kimura, T. (2010). Regulation of adipocyte differentiation by activation of serotonin (5-HT) receptors 5-HT2AR and 5-HT2CR and involvement of microRNA-448-mediated repression of KLF5. Molecular Endocrinology (Baltimore, Md.), 24, 1978–1987. https://doi.org/10.1210/me.2010-0054

    Article  CAS  PubMed  Google Scholar 

  41. Chen, H., Mo, D., Li, M., Zhang, Y., Chen, L., Zhang, X., Li, M., Zhou, X., & Chen, Y. (2014). miR-709 inhibits 3T3-L1 cell differentiation by targeting GSK3beta of Wnt/beta-catenin signaling. Cellular Signalling, 26, 2583–2589. https://doi.org/10.1016/j.cellsig.2014.07.017

    Article  CAS  PubMed  Google Scholar 

  42. Qi, R., Wang, J., Wang, Q., Qiu, X., Yang, F., Liu, Z., & Huang, J. (2019). MicroRNA-425 controls lipogenesis and lipolysis in adipocytes. Biochimica et biophysica acta. Molecular and Cell Biology of Lipids, 1864, 744–755. https://doi.org/10.1016/j.bbalip.2019.02.007

    Article  CAS  PubMed  Google Scholar 

  43. Wang, L., Zhang, S., Zhang, W., Cheng, G., Khan, R., Junjvlieke, Z., Li, S., & Zan, L. (2020). miR-424 Promotes bovine adipogenesis through an unconventional post-transcriptional regulation of STK11. Frontiers in Genetics, 11, 145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chen, C., Xiang, H., Peng, Y.-L., Peng, J., & Jiang, S.-W. (2014). Mature miR-183, negatively regulated by transcription factor GATA3, promotes 3T3-L1 adipogenesis through inhibition of the canonical Wnt/beta-catenin signaling pathway by targeting LRP6. Cellular Signalling, 26, 1155–1165. https://doi.org/10.1016/j.cellsig.2014.02.003

    Article  CAS  PubMed  Google Scholar 

  45. Shi, C., Zhang, M., Tong, M., Yang, L., Pang, L., Chen, L., Xu, G., Chi, X., Hong, Q., Ni, Y., et al. (2015). miR-148a is associated with obesity and modulates adipocyte differentiation of mesenchymal stem cells through wnt signaling. Scientific Reports, 5, 9930–9930. https://doi.org/10.1038/srep09930

    Article  PubMed  PubMed Central  Google Scholar 

  46. Yi, C., Xie, W.-D., Li, F., Lv, Q., He, J., Wu, J., Gu, D., Xu, N., & Zhang, Y. (2011). MiR-143 enhances adipogenic differentiation of 3T3-L1 cells through targeting the coding region of mouse pleiotrophin. FEBS Letters, 585, 3303–3309. https://doi.org/10.1016/j.febslet.2011.09.015

    Article  CAS  PubMed  Google Scholar 

  47. Li, G., Ning, C., Ma, Y., Jin, L., Tang, Q., Li, X., Li, M., & Liu, H. (2017). miR-26b Promotes 3T3-L1 adipocyte differentiation through targeting PTEN. DNA and Cell Biology, 36, 672–681. https://doi.org/10.1089/dna.2017.3712

    Article  CAS  PubMed  Google Scholar 

  48. An, X., Ma, K., Zhang, Z., Zhao, T., Zhang, X., Tang, B., & Li, Z. (2016). miR-17, miR-21, and miR-143 enhance adipogenic differentiation from porcine bone marrow-derived mesenchymal stem cells. DNA and Cell Biology, 35, 410–416. https://doi.org/10.1089/dna.2015.3182

    Article  CAS  PubMed  Google Scholar 

  49. Kang, M., Yan, L.-M., Zhang, W.-Y., Li, Y.-M., Tang, A.-Z., & Ou, H.-S. (2013). Role of microRNA-21 in regulating 3T3-L1 adipocyte differentiation and adiponectin expression. Molecular Biology Reports, 40, 5027–5034. https://doi.org/10.1007/s11033-013-2603-6

    Article  CAS  PubMed  Google Scholar 

  50. Khan, R., Raza, S. H. A., Junjvlieke, Z., Wang, X., Wang, H., Cheng, G., Mei, C., Elsaeid Elnour, I., & Zan, L. (2020). Bta-miR-149–5p inhibits proliferation and differentiation of bovine adipocytes through targeting CRTCs at both transcriptional and posttranscriptional levels. Journal of Cellular Physiology, 235, 5796–5810. https://doi.org/10.1002/jcp.29513

    Article  CAS  PubMed  Google Scholar 

  51. Longley, D., & Johnston, P. (2005). Molecular mechanisms of drug resistance. The Journal of Pathology: A Journal of the Pathological Society of Great Britain and Ireland, 205, 275–292.

    Article  CAS  Google Scholar 

  52. Carthew, R. W., & Sontheimer, E. J. (2009). Origins and mechanisms of miRNAs and siRNAs. Cell, 136, 642–655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lam, J. K., Chow, M. Y., Zhang, Y., & Leung, S. W. (2015). siRNA versus miRNA as therapeutics for gene silencing. Molecular Therapy-Nucleic Acids, 4, e252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lagos-Quintana, M., Rauhut, R., Lendeckel, W., & Tuschl, T. (2001). Identification of novel genes coding for small expressed RNAs. Science, 294, 853–858.

    Article  CAS  PubMed  Google Scholar 

  55. Bartel, D. P. (2004). MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell, 116, 281–297. https://doi.org/10.1016/s0092-8674(04)00045-5

    Article  CAS  PubMed  Google Scholar 

  56. Kim, J., Krichevsky, A., Grad, Y., Hayes, G. D., Kosik, K. S., Church, G. M., & Ruvkun, G. (2004). Identification of many microRNAs that copurify with polyribosomes in mammalian neurons. Proceedings of the National Academy of Sciences of the United States of America, 101, 360–365. https://doi.org/10.1073/pnas.2333854100

    Article  CAS  PubMed  Google Scholar 

  57. Lee, R. C., Feinbaum, R. L., Ambros, V., & The, C. (1993). elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 75, 843–854. https://doi.org/10.1016/0092-8674(93)90529-y

    Article  CAS  PubMed  Google Scholar 

  58. Poy, M. N., Eliasson, L., Krutzfeldt, J., Kuwajima, S., Ma, X., Macdonald, P. E., Pfeffer, S., Tuschl, T., Rajewsky, N., Rorsman, P., et al. (2004). A pancreatic islet-specific microRNA regulates insulin secretion. Nature, 432, 226–230. https://doi.org/10.1038/nature03076

    Article  CAS  PubMed  Google Scholar 

  59. Gauthier, B. R., & Wollheim, C. B. (2006). MicroRNAs: “ribo-regulators” of glucose homeostasis. Nature medicine, 12, 36–38. https://doi.org/10.1038/nm0106-36

    Article  CAS  PubMed  Google Scholar 

  60. Klöting, N., Berthold, S., Kovacs, P., Schön, M. R., Fasshauer, M., Ruschke, K., Stumvoll, M., & Blüher, M. (2009). MicroRNA expression in human omental and subcutaneous adipose tissue. PLoS ONE, 4, e4699.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Wajchenberg, B. L. (2000). Subcutaneous and visceral adipose tissue: Their relation to the metabolic syndrome. Endocrine reviews, 21, 697–738. https://doi.org/10.1210/edrv.21.6.0415

    Article  CAS  PubMed  Google Scholar 

  62. Impey, S., Smith, D. M., Obrietan, K., Donahue, R., Wade, C., & Storm, D. R. (1998). Stimulation of cAMP response element (CRE)-mediated transcription during contextual learning. Nature Neuroscience, 1, 595–601.

    Article  CAS  PubMed  Google Scholar 

  63. Mayr, B., & Montminy, M. (2001). Transcriptional regulation by the phosphorylation-dependent factor CREB. Nature Reviews Molecular Cell Biology, 2, 599–609.

    Article  CAS  PubMed  Google Scholar 

  64. Ouyang, D., Xu, L., Zhang, L., Guo, D., Tan, X., Yu, X., Qi, J., Ye, Y., Liu, Q., Ma, Y., et al. (2016). MiR-181a-5p regulates 3T3-L1 cell adipogenesis by targeting Smad7 and Tcf7l2. Acta biochimica et biophysica Sinica, 48, 1034–1041. https://doi.org/10.1093/abbs/gmw100

    Article  CAS  PubMed  Google Scholar 

  65. Tay, Y., Zhang, J., Thomson, A. M., Lim, B., & Rigoutsos, I. (2008). MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature, 455, 1124–1128.

    Article  CAS  PubMed  Google Scholar 

  66. Li, H., Chen, X., Guan, L., Qi, Q., Shu, G., Jiang, Q., Yuan, L., Xi, Q., & Zhang, Y. (2013). MiRNA-181a regulates adipogenesis by targeting tumor necrosis factor-α (TNF-α) in the porcine model. PLoS ONE, 8, e71568. https://doi.org/10.1371/journal.pone.0071568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Williams, A.; Henao-Mejia, J.; Harman, C.C.; Flavell, R.A. miR-181 and metabolic regulation in the immune system. In Proceedings of Cold Spring Harbor symposia on quantitative biology. 78: 223–230.

  68. Vishvanath, L., & Gupta, R. K. (2019). Contribution of adipogenesis to healthy adipose tissue expansion in obesity. The Journal of Clinical Investigation, 129, 4022–4031. https://doi.org/10.1172/jci129191

    Article  PubMed  PubMed Central  Google Scholar 

  69. Barroso, I., Gurnell, M., Crowley, V. E., Agostini, M., Schwabe, J. W., Soos, M. A., Maslen, G. L., Williams, T. D., Lewis, H., Schafer, A. J., et al. (1999). Dominant negative mutations in human PPARgamma associated with severe insulin resistance, diabetes mellitus and hypertension. Nature, 402, 880–883. https://doi.org/10.1038/47254

    Article  CAS  PubMed  Google Scholar 

  70. Tontonoz, P., Hu, E., & Spiegelman, B. M. (1994). Stimulation of adipogenesis in fibroblasts by PPAR gamma 2, a lipid-activated transcription factor. Cell, 79, 1147–1156. https://doi.org/10.1016/0092-8674(94)90006-x

    Article  CAS  PubMed  Google Scholar 

  71. Ghaben, A. L., & Scherer, P. E. (2019). Adipogenesis and metabolic health. Nature Reviews. Molecular Cell Biology, 20, 242–258. https://doi.org/10.1038/s41580-018-0093-z

    Article  CAS  PubMed  Google Scholar 

  72. Lee, J. E., Schmidt, H., Lai, B., & Ge, K. (2019). Transcriptional and epigenomic regulation of adipogenesis. Molecular and Cellular Biology. https://doi.org/10.1128/mcb.00601-18

    Article  PubMed  PubMed Central  Google Scholar 

  73. Ouyang, D., Ye, Y., Guo, D., Yu, X., Chen, J., Qi, J., Tan, X., Zhang, Y., Ma, Y., & Li, Y. (2015). MicroRNA-125b-5p inhibits proliferation and promotes adipogenic differentiation in 3T3-L1 preadipocytes. Acta biochimica et biophysica Sinica, 47, 355–361.

    Article  CAS  PubMed  Google Scholar 

  74. Zhang, Z., Gao, Y., Xu, M.-Q., Wang, C.-J., Fu, X.-H., Liu, J.-B., Han, D.-X., Jiang, H., Yuan, B., & Zhang, J.-B. (2019). miR-181a regulate porcine preadipocyte differentiation by targeting TGFBR1. Gene, 681, 45–51. https://doi.org/10.1016/j.gene.2018.09.046

    Article  CAS  PubMed  Google Scholar 

  75. Wellen, K. E., & Hotamisligil, G. S. (2003). Obesity-induced inflammatory changes in adipose tissue. The Journal of Clinical Investigation, 112, 1785–1788.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Hotamisligil, G. S., Arner, P., Caro, J. F., Atkinson, R. L., & Spiegelman, B. M. (1995). Increased adipose tissue expression of tumor necrosis factor-alpha in human obesity and insulin resistance. The Journal of Clinical Investigation, 95, 2409–2415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Hauner, H., Petruschke, T., Russ, M., Röhrig, K., & Eckel, J. (1995). Effects of tumour necrosis factor alpha (TNFα) on glucose transport and lipid metabolism of newly-differentiated human fat cells in cell culture. Diabetologia, 38, 764–771.

    Article  CAS  PubMed  Google Scholar 

  78. Meyer, S. U., Thirion, C., Polesskaya, A., Bauersachs, S., Kaiser, S., Krause, S., & Pfaffl, M. W. (2015). TNF-α and IGF1 modify the microRNA signature in skeletal muscle cell differentiation. Cell Communication and Signaling, 13, 1–14.

    Article  Google Scholar 

  79. Prajapati, P.; Sripada, L.; Singh, K.; Bhatelia, K.; Singh, R.; Singh, R. 2015 TNF-α regulates miRNA targeting mitochondrial complex-I and induces cell death in dopaminergic cells. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease 1852: 451–461.

  80. Arner, E., Mejhert, N., Kulyté, A., Balwierz, P. J., Pachkov, M., Cormont, M., Lorente-Cebrián, S., Ehrlund, A., Laurencikiene, J., & Hedén, P. (2012). Adipose tissue microRNAs as regulators of CCL2 production in human obesity. Diabetes, 61, 1986–1993.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Xu, G., Ji, C., Song, G., Zhao, C., Shi, C., Song, L., Chen, L., Yang, L., Huang, F., & Pang, L. (2015). MiR-26b modulates insulin sensitivity in adipocytes by interrupting the PTEN/PI3K/AKT pathway. International Journal of Obesity, 39, 1523–1530.

    Article  CAS  PubMed  Google Scholar 

  82. Lozano-Bartolomé, J., Llauradó, G., Portero-Otin, M., Altuna-Coy, A., Rojo-Martínez, G., Vendrell, J., Jorba, R., Rodríguez-Gallego, E., & Chacón, M. R. (2018). Altered Expression of miR-181a-5p and miR-23a-3p Is Associated With Obesity and TNFα-Induced Insulin Resistance. The Journal of Clinical Endocrinology & Metabolism, 103, 1447–1458. https://doi.org/10.1210/jc.2017-01909

    Article  Google Scholar 

  83. Zhou, B., Li, C., Qi, W., Zhang, Y., Zhang, F., Wu, J. X., Hu, Y. N., Wu, D. M., Liu, Y., Yan, T. T., et al. (2012). Downregulation of miR-181a upregulates sirtuin-1 (SIRT1) and improves hepatic insulin sensitivity. Diabetologia, 55, 2032–2043. https://doi.org/10.1007/s00125-012-2539-8

    Article  CAS  PubMed  Google Scholar 

  84. Yang, A., & Mottillo, E. P. (2020). Adipocyte lipolysis: From molecular mechanisms of regulation to disease and therapeutics. Biochemical Journal, 477, 985–1008.

    Article  CAS  PubMed  Google Scholar 

  85. Huang, R., Duan, X., Liu, X., Cao, H., Wang, Y., Fan, J., & Wang, B. (2019). Upregulation of miR-181a impairs lipid metabolism by targeting PPARα expression in nonalcoholic fatty liver disease. Biochemical and Biophysical Research Communications, 508, 1252–1258. https://doi.org/10.1016/j.bbrc.2018.12.061

    Article  CAS  PubMed  Google Scholar 

  86. Chu, B., Wu, T., Miao, L., Mei, Y., & Wu, M. (2015). MiR-181a regulates lipid metabolism via IDH1. Scientific Reports, 5, 8801. https://doi.org/10.1038/srep08801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Estep, M., Armistead, D., Hossain, N., Elarainy, H., Goodman, Z., Baranova, A., Chandhoke, V., & Younossi, Z. (2010). Differential expression of miRNAs in the visceral adipose tissue of patients with non-alcoholic fatty liver disease. Alimentary Pharmacology & Therapeutics, 32, 487–497.

    Article  CAS  Google Scholar 

  88. Kurylowicz, A., Owczarz, M., Polosak, J., Jonas, M., Lisik, W., Jonas, M., Chmura, A., & Puzianowska-Kuznicka, M. (2016). SIRT1 and SIRT7 expression in adipose tissues of obese and normal-weight individuals is regulated by microRNAs but not by methylation status. International Journal of Obesity, 40, 1635–1642.

    Article  CAS  PubMed  Google Scholar 

  89. Fujioka, S., Matsuzawa, Y., Tokunaga, K., & Tarui, S. (1987). Contribution of intra-abdominal fat accumulation to the impairment of glucose and lipid metabolism in human obesity. Metabolism, 36, 54–59.

    Article  CAS  PubMed  Google Scholar 

  90. Gordon, T., Castelli, W. P., Hjortland, M. C., Kannel, W. B., & Dawber, T. R. (1977). High density lipoprotein as a protective factor against coronary heart disease: The Framingham Study. The American Journal of Medicine, 62, 707–714.

    Article  CAS  PubMed  Google Scholar 

  91. Lee, C.-H., Olson, P., & Evans, R. M. (2003). Minireview: Lipid metabolism, metabolic diseases, and peroxisome proliferator-activated receptors. Endocrinology, 144, 2201–2207.

    Article  CAS  PubMed  Google Scholar 

  92. Saltiel, A. R., & Kahn, C. R. (2001). Insulin signalling and the regulation of glucose and lipid metabolism. Nature, 414, 799–806.

    Article  CAS  PubMed  Google Scholar 

  93. Savage, D. B., Petersen, K. F., & Shulman, G. I. (2007). Disordered lipid metabolism and the pathogenesis of insulin resistance. Physiological Reviews, 87, 507–520.

    Article  CAS  PubMed  Google Scholar 

  94. Metallo, C. M., Gameiro, P. A., Bell, E. L., Mattaini, K. R., Yang, J., Hiller, K., Jewell, C. M., Johnson, Z. R., Irvine, D. J., & Guarente, L. (2012). Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature, 481, 380–384.

    Article  CAS  Google Scholar 

  95. Koh, H.-J., Lee, S.-M., Son, B.-G., Lee, S.-H., Ryoo, Z. Y., Chang, K.-T., Park, J.-W., Park, D.-C., Song, B. J., & Veech, R. L. (2004). Cytosolic NADP+-dependent isocitrate dehydrogenase plays a key role in lipid metabolism. Journal of Biological Chemistry, 279, 39968–39974.

    Article  CAS  PubMed  Google Scholar 

  96. Taylor, M. A., Sossey-Alaoui, K., Thompson, C. L., Danielpour, D., & Schiemann, W. P. (2013). TGF-β upregulates miR-181a expression to promote breast cancer metastasis. The Journal of Clinical Investigation, 123, 150–163.

    Article  CAS  PubMed  Google Scholar 

  97. Iliopoulos, D., Jaeger, S. A., Hirsch, H. A., Bulyk, M. L., & Struhl, K. (2010). STAT3 activation of miR-21 and miR-181b-1 via PTEN and CYLD are part of the epigenetic switch linking inflammation to cancer. Molecular Cell, 39, 493–506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Birkenfeld, A. L., & Shulman, G. I. (2014). Nonalcoholic fatty liver disease, hepatic insulin resistance, and type 2 diabetes. Hepatology, 59, 713–723.

    Article  PubMed  Google Scholar 

  99. Hetherington, A. M., Sawyez, C. G., Zilberman, E., Stoianov, A. M., Robson, D. L., & Borradaile, N. M. (2016). Differential lipotoxic effects of palmitate and oleate in activated human hepatic stellate cells and epithelial hepatoma cells. Cellular Physiology and Biochemistry, 39, 1648–1662.

    Article  CAS  PubMed  Google Scholar 

  100. Song, Y., Li, N., Gu, J., Fu, S., Peng, Z., Zhao, C., Zhang, Y., Li, X., Wang, Z., & Li, X. (2016). β-Hydroxybutyrate induces bovine hepatocyte apoptosis via an ROS-p38 signaling pathway. Journal of Dairy Science, 99, 9184–9198.

    Article  CAS  PubMed  Google Scholar 

  101. Lee, S., Kim, S., Hwang, S., Cherrington, N. J., & Ryu, D.-Y. (2017). Dysregulated expression of proteins associated with ER stress, autophagy and apoptosis in tissues from nonalcoholic fatty liver disease. Oncotarget, 8, 63370.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Song, Y., Li, X., Li, Y., Li, N., Shi, X., Ding, H., Zhang, Y., Li, X., Liu, G., & Wang, Z. (2014). Non-esterified fatty acids activate the ROS–p38–p53/Nrf2 signaling pathway to induce bovine hepatocyte apoptosis in vitro. Apoptosis, 19, 984–997.

    Article  CAS  PubMed  Google Scholar 

  103. Sartorius, T., Drescher, A., Panse, M., Lastovicka, P., Peter, A., Weigert, C., Kostenis, E., Ullrich, S., & Häring, H.-U. (2015). Mice lacking free fatty acid receptor 1 (GPR40/FFAR1) are protected against conjugated linoleic acid-induced fatty liver but develop inflammation and insulin resistance in the brain. Cellular Physiology and Biochemistry, 35, 2272–2284.

    Article  CAS  PubMed  Google Scholar 

  104. Kang, Y.-H., Cho, M.-H., Kim, J.-Y., Kwon, M.-S., Peak, J.-J., Kang, S.-W., Yoon, S.-Y., & Song, Y. (2016). Impaired macrophage autophagy induces systemic insulin resistance in obesity. Oncotarget, 7, 35577.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Rinella, M. E. (2015). Nonalcoholic fatty liver disease: A systematic review. JAMA, 313, 2263–2273.

    Article  CAS  PubMed  Google Scholar 

  106. Du, X., Yang, Y., Xu, C., Peng, Z., Zhang, M., Lei, L., Gao, W., Dong, Y., Shi, Z., Sun, X., et al. (2017). Upregulation of miR-181a impairs hepatic glucose and lipid homeostasis. Oncotarget, 8(53), 91362–91378.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Hotamisligil, G. S. (2006). Inflammation and metabolic disorders. Nature, 444, 860–867.

    Article  CAS  PubMed  Google Scholar 

  108. Hulsmans, M., & Holvoet, P. (2010). The vicious circle between oxidative stress and inflammation in atherosclerosis. Journal of Cellular and Molecular Medicine, 14, 70–78.

    Article  CAS  PubMed  Google Scholar 

  109. Weisberg, S. P., McCann, D., Desai, M., Rosenbaum, M., Leibel, R. L., & Ferrante, A. W. (2003). Obesity is associated with macrophage accumulation in adipose tissue. The Journal of Clinical Investigation, 112, 1796–1808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Kullo, I. J., Hensrud, D. D., & Allison, T. G. (2002). Comparison of numbers of circulating blood monocytes in men grouped by body mass index (< 25, 25 to< 30,≥ 30). American Journal of Cardiology, 89, 1441–1443.

    Article  PubMed  Google Scholar 

  111. Ghanim, H., Aljada, A., Hofmeyer, D., Syed, T., Mohanty, P., & Dandona, P. (2004). Circulating mononuclear cells in the obese are in a proinflammatory state. Circulation, 110, 1564–1571.

    Article  CAS  PubMed  Google Scholar 

  112. Xie, H., Lim, B., & Lodish, H. F. (2009). MicroRNAs induced during adipogenesis that accelerate fat cell development are downregulated in obesity. Diabetes, 58, 1050–1057.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Bonauer, A., Boon, R. A., & Dimmeler, S. (2010). Vascular micrornas. Current Drug Targets, 11, 943–949.

    Article  CAS  PubMed  Google Scholar 

  114. Hulsmans, M., Keyzer, D. D., & Holvoet, P. (2011). MicroRNAs regulating oxidative stress and inflammation in relation to obesity and atherosclerosis. The FASEB Journal, 25, 2515–2527.

    Article  CAS  PubMed  Google Scholar 

  115. Hulsmans, M., Sinnaeve, P., Van der Schueren, B., Mathieu, C., Janssens, S., & Holvoet, P. (2012). Decreased miR-181a expression in monocytes of obese patients is associated with the occurrence of metabolic syndrome and coronary artery disease. The Journal of Clinical Endocrinology & Metabolism, 97, E1213–E1218. https://doi.org/10.1210/jc.2012-1008

    Article  CAS  Google Scholar 

  116. Marcondes, J. P. C., Andrade, P. F. B., Sávio, A. L. V., Silveira, M. A. D., Rudge, M. V. C., & Salvadori, D. M. F. (2018). BCL2 and miR-181a transcriptional alterations in umbilical-cord blood cells can be putative biomarkers for obesity. Mutation Research Genetic Toxicology and Environmental Mutagenesis, 836, 90–96. https://doi.org/10.1016/j.mrgentox.2018.06.009

    Article  CAS  PubMed  Google Scholar 

  117. Franceschi, C., Bonafè, M., Valensin, S., Olivieri, F., De Luca, M., Ottaviani, E., & De Benedictis, G. (2000). Inflamm-aging: An evolutionary perspective on immunosenescence. Annals of the New York Academy of Sciences, 908, 244–254.

    Article  CAS  PubMed  Google Scholar 

  118. Apovian, C. M., & Gokce, N. (2012). Obesity and cardiovascular disease. Circulation, 125, 1178–1182.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Renehan, A. G., Tyson, M., Egger, M., Heller, R. F., & Zwahlen, M. (2008). Body-mass index and incidence of cancer: A systematic review and meta-analysis of prospective observational studies. The Lancet, 371, 569–578.

    Article  Google Scholar 

  120. Lee, Y.-H., Kim, S. R., Han, D. H., Yu, H. T., Han, Y. D., Kim, J. H., Kim, S. H., Lee, C. J., Min, B.-H., & Kim, D.-H. (2019). Senescent T cells predict the development of hyperglycemia in humans. Diabetes, 68, 156–162.

    Article  CAS  PubMed  Google Scholar 

  121. Campisi, J. (2011). Cellular senescence: Putting the paradoxes in perspective. Current Opinion in Genetics & Development, 21, 107–112.

    Article  CAS  Google Scholar 

  122. Frasca, D., Romero, M., Diaz, A., Garcia, D., Thaller, S., & Blomberg, B. B. (1839). B cells with a senescent-associated secretory phenotype accumulate in the adipose tissue of individuals with obesity. International Journal of Molecular Sciences, 2021, 22.

    Google Scholar 

  123. Vucenik, I., & Stains, J. P. (2012). Obesity and cancer risk: Evidence, mechanisms, and recommendations. Annals of the New York Academy of Sciences, 1271, 37–43. https://doi.org/10.1111/j.1749-6632.2012.06750.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Parekh, N., Chandran, U., & Bandera, E. V. (2012). Obesity in cancer survival. Annual review of nutrition, 32, 311–342. https://doi.org/10.1146/annurev-nutr-071811-150713

    Article  CAS  PubMed  Google Scholar 

  125. Griggs, J. J., Sorbero, M. E., & Lyman, G. H. (2005). Undertreatment of obese women receiving breast cancer chemotherapy. Archives of Internal Medicine, 165, 1267–1273. https://doi.org/10.1001/archinte.165.11.1267

    Article  PubMed  Google Scholar 

  126. Wong, J. R., Gao, Z., Merrick, S., Wilson, P., Uematsu, M., Woo, K., & Cheng, C. W. (2009). Potential for higher treatment failure in obese patients: Correlation of elevated body mass index and increased daily prostate deviations from the radiation beam isocenters in an analysis of 1,465 computed tomographic images. International Journal of Radiation Oncology, biology, Physics, 75, 49–55. https://doi.org/10.1016/j.ijrobp.2008.07.049

    Article  PubMed  Google Scholar 

  127. Gori, M., Arciello, M., & Balsano, C. (2014). MicroRNAs in nonalcoholic fatty liver disease: novel biomarkers and prognostic tools during the transition from steatosis to hepatocarcinoma. BioMed Research International, 2014, 741465. https://doi.org/10.1155/2014/741465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Ji, J., Yamashita, T., Budhu, A., Forgues, M., Jia, H. L., Li, C., Deng, C., Wauthier, E., Reid, L. M., & Ye, Q. H. (2009). Identification of microRNA-181 by genome-wide screening as a critical player in EpCAM–positive hepatic cancer stem cells. Hepatology, 50, 472–480.

    Article  CAS  PubMed  Google Scholar 

  129. Ji, J., Yamashita, T., & Wang, X. W. (2011). Wnt/beta-catenin signaling activates microRNA-181 expression in hepatocellular carcinoma. Cell & Bioscience, 1, 1–8.

    Article  Google Scholar 

  130. Pandey, A. K., Agarwal, P., Kaur, K., & Datta, M. (2009). MicroRNAs in diabetes: Tiny players in big disease. Cellular Physiology and Biochemistry : International Journal of Experimental Cellular Physiology, Biochemistry, and Pharmacology, 23, 221–232. https://doi.org/10.1159/000218169

    Article  CAS  PubMed  Google Scholar 

  131. Wild, S., Roglic, G., Green, A., Sicree, R., & King, H. (2004). Global prevalence of diabetes: Estimates for the year 2000 and projections for 2030. Diabetes Care, 27, 1047–1053. https://doi.org/10.2337/diacare.27.5.1047

    Article  PubMed  Google Scholar 

  132. Brownlee, M. (2001). Biochemistry and molecular cell biology of diabetic complications. Nature, 414, 813–820. https://doi.org/10.1038/414813a

    Article  CAS  PubMed  Google Scholar 

  133. Schmidt, A. M., Hori, O., Brett, J., Yan, S. D., Wautier, J. L., & Stern, D. (1994). Cellular receptors for advanced glycation end products. Implications for induction of oxidant stress and cellular dysfunction in the pathogenesis of vascular lesions. Arteriosclerosis and Thrombosis : A Journal of Vascular Biology, 14, 1521–1528. https://doi.org/10.1161/01.atv.14.10.1521

    Article  CAS  PubMed  Google Scholar 

  134. Hofmann, M. A., Drury, S., Fu, C., Qu, W., Taguchi, A., Lu, Y., Avila, C., Kambham, N., Bierhaus, A., Nawroth, P., et al. (1999). RAGE mediates a novel proinflammatory axis: A central cell surface receptor for S100/calgranulin polypeptides. Cell, 97, 889–901. https://doi.org/10.1016/s0092-8674(00)80801-6

    Article  CAS  PubMed  Google Scholar 

  135. Bucciarelli, L. G., Wendt, T., Qu, W., Lu, Y., Lalla, E., Rong, L. L., Goova, M. T., Moser, B., Kislinger, T., Lee, D. C., et al. (2002). RAGE blockade stabilizes established atherosclerosis in diabetic apolipoprotein E-null mice. Circulation, 106, 2827–2835. https://doi.org/10.1161/01.cir.0000039325.03698.36

    Article  CAS  PubMed  Google Scholar 

  136. Yach, D., Stuckler, D., & Brownell, K. D. (2006). Epidemiologic and economic consequences of the global epidemics of obesity and diabetes. Nature Medicine, 12, 62–66.

    Article  CAS  PubMed  Google Scholar 

  137. Kahn, S. E., Hull, R. L., & Utzschneider, K. M. (2006). Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature, 444, 840–846.

    Article  CAS  PubMed  Google Scholar 

  138. Guarente, L. (2006). Sirtuins as potential targets for metabolic syndrome. Nature, 444, 868–874.

    Article  CAS  PubMed  Google Scholar 

  139. Liang, F., Kume, S., & Koya, D. (2009). SIRT1 and insulin resistance. Nature Reviews Endocrinology, 5, 367–373.

    Article  CAS  PubMed  Google Scholar 

  140. Sun, C., Zhang, F., Ge, X., Yan, T., Chen, X., Shi, X., & Zhai, Q. (2007). SIRT1 improves insulin sensitivity under insulin-resistant conditions by repressing PTP1B. Cell Metabolism, 6, 307–319.

    Article  CAS  PubMed  Google Scholar 

  141. Knarr, M., Nagaraj, A. B., Kwiatkowski, L. J., & DiFeo, A. (2019). miR-181a modulates circadian rhythm in immortalized bone marrow and adipose derived stromal cells and promotes differentiation through the regulation of PER3. Scientific Reports, 9, 307. https://doi.org/10.1038/s41598-018-36425-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Marcondes, J.P.d.C., Andrade, P.F.B., Sávio, A.L.V., Silveira, M.A.D., Rudge, M.V.C., Salvadori, D.M.F. (2018). BCL2 and miR-181a transcriptional alterations in umbilical-cord blood cells can be putative biomarkers for obesity. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 836, 90–96. https://doi.org/10.1016/j.mrgentox.2018.06.009

    Article  CAS  Google Scholar 

  143. Lian, S., Guo, J. R., Nan, X. M., Ma, L., Loor, J. J., & Bu, D. P. (2016). MicroRNA Bta-miR-181a regulates the biosynthesis of bovine milk fat by targeting ACSL1. Journal of Dairy Science, 99, 3916–3924. https://doi.org/10.3168/jds.2015-10484

    Article  CAS  PubMed  Google Scholar 

  144. Lin, H. J., Lin, C. W., Mersmann, H. J., & Ding, S. T. (2020). Sterol-O acyltransferase 1 is inhibited by gga-miR-181a-5p and gga-miR-429–3p through the TGFβ pathway in endodermal epithelial cells of Japanese quail. Comparative Biochemistry and Physiology Part B, BIOCHEMISTRY & Molecular Biology, 240, 110376. https://doi.org/10.1016/j.cbpb.2019.110376

    Article  CAS  Google Scholar 

  145. Zhu, W., Gui, W., Lin, X., Yin, X., Liang, L., & Li, H. (2021). Maternal undernutrition modulates hepatic MicroRNAs expression in the early life of offspring. Experimental Cell Research, 400, 112450. https://doi.org/10.1016/j.yexcr.2020.112450

    Article  CAS  PubMed  Google Scholar 

  146. Zhiming, W., Yiren, G., Keren, L., Mingzhou, L., & Long, J. (2022). Study on Regulation of miR-181a and miR-181d-5p in Porcine Preadipocyte Differentiation. China Animal Husbandry and Veterinary Medicine, 49, 2195–2207. https://doi.org/10.16431/j.cnki.1671-7236.2022.06.020

    Article  Google Scholar 

  147. Kim, M. E., Kim, D. H., & Lee, J. S. (2022). FoxO transcription factors: Applicability as a novel immune cell regulators and therapeutic targets in oxidative stress-related diseases. International Journal of Molecular Sciences. https://doi.org/10.3390/ijms231911877

    Article  PubMed  PubMed Central  Google Scholar 

  148. Zhou, Y., & Liu, F. (2022). Coordination of the AMPK, Akt, mTOR, and p53 Pathways under Glucose Starvation. International Journal of Molecular sciences. https://doi.org/10.3390/ijms232314945

    Article  PubMed  PubMed Central  Google Scholar 

  149. Sabaie, H., Gholipour, M., Asadi, M. R., Abed, S., Sharifi-Bonab, M., Taheri, M., Hussen, B. M., Brand, S., Neishabouri, S. M., & Rezazadeh, M. (2022). Identification of key long non-coding RNA-associated competing endogenous RNA axes in Brodmann Area 10 brain region of schizophrenia patients. Frontiers in Psychiatry, 13, 1010977. https://doi.org/10.3389/fpsyt.2022.1010977

    Article  PubMed  PubMed Central  Google Scholar 

  150. Ping, W., Gao, Y., Fan, X., Li, W., Deng, Y., & Fu, X. (2018). MiR-181a contributes gefitinib resistance in non-small cell lung cancer cells by targeting GAS7. Biochemical and Biophysical Research Communications, 495, 2482–2489. https://doi.org/10.1016/j.bbrc.2017.12.096

    Article  CAS  PubMed  Google Scholar 

  151. Saberinia, A., Alinezhad, A., Jafari, F., Soltany, S., & Akhavan Sigari, R. (2020). Oncogenic miRNAs and target therapies in colorectal cancer. Clinica Chimica Acta: International Journal of Clinical Chemistry, 508, 77–91. https://doi.org/10.1016/j.cca.2020.05.012

    Article  CAS  PubMed  Google Scholar 

  152. Kastrati, I., Canestrari, E., & Frasor, J. (2015). PHLDA1 expression is controlled by an estrogen receptor-NFκB-miR-181 regulatory loop and is essential for formation of ER+ mammospheres. Oncogene, 34, 2309–2316. https://doi.org/10.1038/onc.2014.180

    Article  CAS  PubMed  Google Scholar 

  153. Gu, C., Feng, M., Yin, Z., Luo, X., Yang, J., Li, Y., Li, T., Wang, R., & Fei, J. (2016). RalA, a GTPase targeted by miR-181a, promotes transformation and progression by activating the Ras-related signaling pathway in chronic myelogenous leukemia. Oncotarget, 7, 20561–20573. https://doi.org/10.18632/oncotarget.7987

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The study was supported by Key scientific research project of Henan University through project number 23B180007.

Author information

Authors and Affiliations

Authors

Contributions

GHF and RWK: Conceptualization. GHF and RWK: methodology. GHF and RWK: software. GHF and RWK: formal analysis. GHF and RWK: writing—original draft preparation. GHF, RWK and AAE: writing—review and editing. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Rajwali Khan.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Institutional Review Board

Not applicable.

Informed Consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hongfang, G., Khan, R. & El-Mansi, A.A. Bioinformatics Analysis of miR-181a and Its Role in Adipogenesis, Obesity, and Lipid Metabolism Through Review of Literature. Mol Biotechnol (2023). https://doi.org/10.1007/s12033-023-00894-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12033-023-00894-w

Keywords

Navigation