Skip to main content
Log in

Multiple Functions of Compatible Solute Ectoine and Strategies for Constructing Overproducers for Biobased Production

  • Review Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Ectoine and its derivative 5-hydroxyectoine are compatible solutes initially found in the hyperhalophilic bacterium Ectothiorhodospira halochloris, which inhabits the desert in Egypt. The habitat of ectoine producers implies the primary function of ectoine as a cytoprotectant against harsh conditions such as high salinity, drought, and high radiation. More extensive and in-depth studies have revealed the multiple functions of ectoine in its native producer bacterial cells and other types of cells and its biomolecular components (such as proteins and DNA) as a general protective agent. Its chemical properties as a bio-based amino acid derivative make it attractive for basic scientific research and related industries, such as the food/agricultural industry, cosmetic manufacturing, biologics, and therapeutic agent preparation. This article first discusses the functions and applications of ectoine and 5-hydroxyectoine. Subsequently, more emphasis was placed on advances in bio-based ectoine and/or 5-hydroxyectoine production. Strategies for developing more robust cell factories for highly efficient ectoine and/or 5-hydroxyectoine production are further discussed. We hope this review will provide a valuable reference for studies on the bio-based production of ectoine and 5-hydroxyectoine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Alsharif, W., Saad, M. M., & Hirt, H. (2020). Desert microbes for boosting sustainable agriculture in extreme environments. Frontiers in Microbiology, 11, 1666.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Somayaji, A., Dhanjal, C. R., Lingamsetty, R., Vinayagam, R., Selvaraj, R., Varadavenkatesan, T., & Govarthanan, M. (2022). An insight into the mechanisms of homeostasis in extremophiles. Microbiological Research, 263, 127115.

    Article  CAS  PubMed  Google Scholar 

  3. Afifa, H. N., Baqar, Z., Mumtaz, M., El-Sappah, A. H., Show, P. L., Iqbal, H. M. N., Varjani, S., & Bilal, M. (2022). Bioprospecting fungal-derived value-added bioproducts for sustainable pharmaceutical applications. Sustainable Chemistry and Pharmacy, 29, 100755.

    Article  CAS  Google Scholar 

  4. Empadinhas, N., & da Costa, M. S. (2006). Diversity and biosynthesis of compatible solutes in hyper/thermophiles. International Microbiology, 9, 199–206.

    CAS  PubMed  Google Scholar 

  5. Peters, P. (1990). The biosynthesis of ectoine. FEMS Microbiology Letters, 71, 157–162.

    Article  CAS  Google Scholar 

  6. Graf, R., Anzali, S., Buenger, J., Pfluecker, F., & Driller, H. (2008). The multifunctional role of ectoine as a natural cell protectant. Clinics in Dermatology, 26, 326–333.

    Article  PubMed  Google Scholar 

  7. Ng, H. S., Wan, P.-K., Kondo, A., Chang, J.-S., & Lan, J.C.-W. (2023). Production and recovery of ectoine: A review of current state and future prospects. Processes, 11, 339.

    Article  CAS  Google Scholar 

  8. Alves, A., Sousa, E., Kijjoa, A., & Pinto, M. (2020). Marine-derived compounds with potential use as cosmeceuticals and nutricosmetics. Molecules, 25, 2536.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Klein, J., Schwarz, T., & Lentzen, G. (2007). Ectoine as a natural component of food: Detection in red smear cheeses. Journal of Dairy Research, 74, 446–451.

    Article  CAS  PubMed  Google Scholar 

  10. Nakayama, H., Yoshida, K., Ono, H., Murooka, Y., & Shinmyo, A. (2000). Ectoine, the compatible solute of Halomonas elongata, confers hyperosmotic tolerance in cultured tobacco cells. Plant Physiology, 122, 1239–1247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Boroujeni, M. B., & Nayeri, H. (2018). Stabilization of bovine lactoperoxidase in the presence of ectoine. Food Chemistry, 265, 208–215.

    Article  CAS  PubMed  Google Scholar 

  12. Kauth, M., & Trusova, O. V. (2022). Topical ectoine application in children and adults to treat inflammatory diseases associated with an impaired skin barrier: A systematic review. Dermatology and Therapy, 12, 295–313.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Becker, J., & Wittmann, C. (2020). Microbial production of extremolytes—High-value active ingredients for nutrition, health care, and well-being. Current Opinion in Biotechnology, 65, 118–128.

    Article  CAS  PubMed  Google Scholar 

  14. Held, C., Neuhaus, T., & Sadowski, G. (2010). Compatible solutes: Thermodynamic properties and biological impact of ectoines and prolines. Biophysical Chemistry, 152, 28–39.

    Article  CAS  PubMed  Google Scholar 

  15. Czech, L., Hermann, L., Stoveken, N., Richter, A. A., Hoppner, A., Smits, S. H. J., Heider, J., & Bremer, E. (2018). Role of the extremolytes ectoine and hydroxyectoine as stress protectants and nutrients: Genetics, phylogenomics, biochemistry, and structural analysis. Genes (Basel), 9(4), 177.

    Article  PubMed  Google Scholar 

  16. Jebbar, M., Talibart, R., Gloux, K., Bernard, T., & Blanco, C. (1992). Osmoprotection of Escherichia coli by ectoine: Uptake and accumulation characteristics. Journal of Bacteriology, 174, 5027–5035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rai, M., Pal, M., Sumesh, K. V., Jain, V., & Sankaranarayanan, A. (2006). Engineering for biosynthesis of ectoine (2-methyl 4-carboxy tetrahydro pyrimidine) in tobacco chloroplasts leads to accumulation of ectoine and enhanced salinity tolerance. Plant Science, 170, 291–306.

    Article  CAS  Google Scholar 

  18. Bownik, A., & Stepniewska, Z. (2016). Ectoine as a promising protective agent in humans and animals. Archives of Industrial Hygiene and Toxicology, 67, 260–265.

    Article  CAS  PubMed  Google Scholar 

  19. Qiu, X., Yu, L., Cao, X., Wu, H., Xu, G., & Tang, X. (2021). Halomonas sedimenti sp. nov., a halotolerant bacterium isolated from deep-sea sediment of the southwest Indian Ocean. Current Microbiology, 78, 1662–1669.

    Article  CAS  PubMed  Google Scholar 

  20. Killian, M. S., Taylor, A. J., & Castner, D. G. (2018). Stabilization of dry protein coatings with compatible solutes. Biointerphases, 13, 06E401.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Van-Thuoc, D., Hashim, S. O., Hatti-Kaul, R., & Mamo, G. (2013). Ectoine-mediated protection of enzyme from the effect of pH and temperature stress: A study using Bacillus halodurans xylanase as a model. Applied Microbiology and Biotechnology, 97, 6271–6278.

    Article  CAS  PubMed  Google Scholar 

  22. Hahn, M. B., Meyer, S., Schroter, M. A., Kunte, H. J., Solomun, T., & Sturm, H. (2017). DNA protection by ectoine from ionizing radiation: Molecular mechanisms. Physical Chemistry Chemical Physics, 19, 25717–25722.

    Article  CAS  PubMed  Google Scholar 

  23. Schroter, M. A., Meyer, S., Hahn, M. B., Solomun, T., Sturm, H., & Kunte, H. J. (2017). Ectoine protects DNA from damage by ionizing radiation. Scientific Reports, 7, 15272.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Jorge, C. D., Borges, N., Bagyan, I., Bilstein, A., & Santos, H. (2016). Potential applications of stress solutes from extremophiles in protein folding diseases and healthcare. Extremophiles, 20, 251–259.

    Article  CAS  PubMed  Google Scholar 

  25. Kanapathipillai, M., Lentzen, G., Sierks, M., & Park, C. B. (2005). Ectoine and hydroxyectoine inhibit aggregation and neurotoxicity of Alzheimer’s beta-amyloid. FEBS Letters, 579, 4775–4780.

    Article  CAS  PubMed  Google Scholar 

  26. Sydlik, U., Gallitz, I., Albrecht, C., Abel, J., Krutmann, J., & Unfried, K. (2009). The compatible solute ectoine protects against nanoparticle-induced neutrophilic lung inflammation. American Journal of Respiratory and Critical Care Medicine, 180, 29–35.

    Article  CAS  PubMed  Google Scholar 

  27. Talibart, R., Jebbar, M., Gouesbet, G., Himdi-Kabbab, S., Wroblewski, H., Blanco, C., & Bernard, T. (1994). Osmoadaptation in rhizobia: Ectoine-induced salt tolerance. Journal of Bacteriology, 176, 5210–5217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tanne, C., Golovina, E. A., Hoekstra, F. A., Meffert, A., & Galinski, E. A. (2014). Glass-forming property of hydroxyectoine is the cause of its superior function as a desiccation protectant. Frontiers in Microbiology, 5, 150.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Manzanera, M., Garcia de Castro, A., Tondervik, A., Rayner-Brandes, M., Strom, A. R., & Tunnacliffe, A. (2002). Hydroxyectoine is superior to trehalose for anhydrobiotic engineering of Pseudomonas putida KT2440. Applied Environmental Microbiology, 68, 4328–4333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Manzanera, M., Vilchez, S., & Tunnacliffe, A. (2004). High survival and stability rates of Escherichia coli dried in hydroxyectoine. FEMS Microbiology Letters, 233, 347–352.

    Article  CAS  PubMed  Google Scholar 

  31. Elbialy, H., Omara, A., Sharaf, A. M., El-Hela, A., Shahin, A., & El-Fouly, M. (2019). Isolation and characterization of new ectoine-producers from various hypersaline ecosystems in Egypt. Journal of Nuclear Technology in Applied Science, 7, 221–236.

    Article  Google Scholar 

  32. Hermann, L., Mais, C. N., Czech, L., Smits, S. H. J., Bange, G., & Bremer, E. (2020). The ups and downs of ectoine: Structural enzymology of a major microbial stress protectant and versatile nutrient. Biological Chemistry, 401, 1443–1468.

    Article  CAS  PubMed  Google Scholar 

  33. Widderich, N., Hoppner, A., Pittelkow, M., Heider, J., Smits, S. H., & Bremer, E. (2014). Biochemical properties of ectoine hydroxylases from extremophiles and their wider taxonomic distribution among microorganisms. PLoS ONE, 9, e93809.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Wohlfarth, A., Severin, J., & Galinski, E. A. (1990). The spectrum of compatible solutes in heterotrophic halophilic eubacteria of the family Halomonadaceae. Journal of General Microbiology, 136, 705–712.

    Article  CAS  Google Scholar 

  35. Vasistha, S., Khanra, A., Rai, M. P., Khan, S. A., Ma, Z., Munawaroh, H. S. H., Tang, D. Y. Y., & Show, P. L. (2023). Exploring the pivotal significance of microalgae-derived sustainable lipid production: A critical review of green bioenergy development. Energies, 16, 531.

    Article  CAS  Google Scholar 

  36. Tang, D. Y. Y., Chu, D.-T., Nhi-Cong, L. T., Ratchahat, S., Banat, F., Chew, K. W., Gentili, F. G., & Show, P. L. (2023). Investigation and screening of mixed microalgae species for lipase production and recovery using liquid biphasic flotation approach. Journal of the Taiwan Institute of Chemical Engineers, 142, 104646.

    Article  CAS  Google Scholar 

  37. Watthanasakphuban, N., Nguyen, L. V., Cheng, Y.-S., Show, P.-L., Sriariyanun, M., Koffas, M., & Rattanaporn, K. (2023). Development of a molasses-based medium for Agrobacterium tumefaciens fermentation for application in plant-based recombinant protein production. Fermentation, 9, 149.

    Article  CAS  Google Scholar 

  38. Kunte, H., Lentzen, G., & Galinski, E. (2014). Industrial production of the cell protectant ectoine: Protection mechanisms, processes, and products. Current Biotechnology, 3, 10–25.

    Article  CAS  Google Scholar 

  39. Onraedt, A. E., Walcarius, B. A., Soetaert, W. K., & Vandamme, E. J. (2005). Optimization of ectoine synthesis through fed-batch fermentation of Brevibacterium epidermis. Biotechnology Progress, 21, 1206–1212.

    Article  CAS  PubMed  Google Scholar 

  40. Zhang, L. H., Lang, Y. J., & Nagata, S. (2009). Efficient production of ectoine using ectoine-excreting strain. Extremophiles, 13, 717–724.

    Article  CAS  PubMed  Google Scholar 

  41. Chen, W. C., Hsu, C. C., Lan, J. C., Chang, Y. K., Wang, L. F., & Wei, Y. H. (2018). Production and characterization of ectoine using a moderately halophilic strain Halomonas salina BCRC17875. Journal of Bioscience and Bioengineering, 125, 578–584.

    Article  CAS  PubMed  Google Scholar 

  42. Chen, W. C., Hsu, C. C., Wang, L. F., Lan, J. C., Chang, Y. K., & Wei, Y. H. (2019). Exploring useful fermentation strategies for the production of hydroxyectoine with a halophilic strain, Halomonas salina BCRC 17875. Journal of Bioscience and Bioengineering, 128, 332–336.

    Article  CAS  PubMed  Google Scholar 

  43. Zhao, Q., Meng, Y., Li, S., Lv, P., Xu, P., & Yang, C. (2018). Genome sequence of Halomonas hydrothermalis Y2, an efficient ectoine-producer isolated from pulp mill wastewater. Journal of Biotechnology, 285, 38–41.

    Article  CAS  PubMed  Google Scholar 

  44. Zhao, Q., Li, S., Lv, P., Sun, S., Ma, C., Xu, P., Su, H., & Yang, C. (2019). High ectoine production by an engineered Halomonas hydrothermalis Y2 in a reduced salinity medium. Microbial Cell Factories, 18, 184.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Liu, M., Liu, H., Shi, M., Jiang, M., Li, L., & Zheng, Y. (2021). Microbial production of ectoine and hydroxyectoine as high-value chemicals. Microbial Cell Factories, 20, 76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chen, G. Q., Zhang, X., Liu, X., Huang, W., Xie, Z., Han, J., Xu, T., Mitra, R., Zhou, C., Zhang, J., & Chen, T. (2022). Halomonas spp., as chassis for low-cost production of chemicals. Applied Microbiology and Biotechnology, 106, 6977–6992.

    Article  CAS  PubMed  Google Scholar 

  47. Weinstock, M. T., Hesek, E. D., Wilson, C. M., & Gibson, D. G. (2016). Vibrio natriegens as a fast-growing host for molecular biology. Nature Methods, 13, 849–851.

    Article  CAS  PubMed  Google Scholar 

  48. Yin, J., Chen, J. C., Wu, Q., & Chen, G. Q. (2015). Halophiles, coming stars for industrial biotechnology. Biotechnology Advances, 33, 1433–1442.

    Article  CAS  PubMed  Google Scholar 

  49. Tan, S. I., Hsiang, C. C., & Ng, I. S. (2021). Tailoring genetic elements of the plasmid-driven T7 system for stable and robust one-step cloning and protein expression in broad Escherichia coli. ACS Synthetic Biology, 10, 2753–2762.

    Article  CAS  PubMed  Google Scholar 

  50. Kushwaha, M., & Salis, H. M. (2015). A portable expression resource for engineering cross-species genetic circuits and pathways. Nature Communications, 6, 7832.

    Article  CAS  PubMed  Google Scholar 

  51. Zhang, H., Liang, Z., Zhao, M., Ma, Y., Luo, Z., Li, S., & Xu, H. (2022). Metabolic engineering of Escherichia coli for ectoine production with a fermentation strategy of supplementing the amino donor. Frontiers in Bioengineering and Biotechnology, 10, 824859.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Hillier, H. T., Altermark, B., & Leiros, I. (2020). The crystal structure of the tetrameric DABA-aminotransferase EctB, a rate-limiting enzyme in the ectoine biosynthesis pathway. The FEBS Journal, 287, 4641–4658.

    Article  CAS  PubMed  Google Scholar 

  53. Ma, Q., Xia, L., Wu, H., Zhuo, M., Yang, M., Zhang, Y., Tan, M., Zhao, K., Sun, Q., Xu, Q., Chen, N., & Xie, X. (2022). Metabolic engineering of Escherichia coli for efficient osmotic stress-free production of compatible solute hydroxyectoine. Biotechnology and Bioengineering, 119, 89–101.

    Article  CAS  PubMed  Google Scholar 

  54. Kumar, D., & Gomes, J. (2005). Methionine production by fermentation. Biotechnology Advances, 23, 41–61.

    Article  CAS  PubMed  Google Scholar 

  55. Jiang, A., Song, Y., You, J., Zhang, X., Xu, M., & Rao, Z. (2022). High-yield ectoine production in engineered Corynebacterium glutamicum by fine metabolic regulation via plug-in repressor library. Bioresource Technology, 362, 127802.

    Article  CAS  PubMed  Google Scholar 

  56. Becker, J., Klopprogge, C., Herold, A., Zelder, O., Bolten, C. J., & Wittmann, C. (2007). Metabolic flux engineering of l-lysine production in Corynebacterium glutamicum—Over expression and modification of G6P dehydrogenase. Journal of Biotechnology, 132, 99–109.

    Article  CAS  PubMed  Google Scholar 

  57. Becker, J., Schafer, R., Kohlstedt, M., Harder, B. J., Borchert, N. S., Stoveken, N., Bremer, E., & Wittmann, C. (2013). Systems metabolic engineering of Corynebacterium glutamicum for production of the chemical chaperone ectoine. Microbial Cell Factories, 12, 110.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Kalinowski, J., Bathe, B., Bartels, D., Bischoff, N., Bott, M., Burkovski, A., Dusch, N., Eggeling, L., Eikmanns, B. J., Gaigalat, L., Goesmann, A., Hartmann, M., Huthmacher, K., Kramer, R., Linke, B., McHardy, A. C., Meyer, F., Mockel, B., Pfefferle, W., … Tauch, A. (2003). The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of l-aspartate-derived amino acids and vitamins. Journal of Biotechnology, 104, 5–25.

    Article  CAS  PubMed  Google Scholar 

  59. Manfrao-Netto, J. H. C., Gomes, A. M. V., & Parachin, N. S. (2019). Advances in using Hansenula polymorpha as chassis for recombinant protein production. Frontiers in Bioengineering and Biotechnology, 7, 94.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Eilert, E., Kranz, A., Hollenberg, C. P., Piontek, M., & Suckow, M. (2013). Synthesis and release of the bacterial compatible solute 5-hydroxyectoine in Hansenula polymorpha. Journal of Biotechnology, 167, 85–93.

    Article  CAS  PubMed  Google Scholar 

  61. He, Y. Z., Gong, J., Yu, H. Y., Tao, Y., Zhang, S., & Dong, Z. Y. (2015). High production of ectoine from aspartate and glycerol by use of whole-cell biocatalysis in recombinant Escherichia coli. Microbial Cell Factories, 14, 55.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Wang, T., Ma, X., Du, G., & Chen, J. (2012). Overview of regulatory strategies and molecular elements in metabolic engineering of bacteria. Molecular Biotechnology, 52, 300–308.

    Article  CAS  PubMed  Google Scholar 

  63. Zhao, J., Qin, B., Nikolay, R., Spahn, C. M. T., & Zhang, G. (2019). Translatomics: The global view of translation. International Journal of Molecular Sciences, 20(1), 212.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Zhu, T., Guo, M., Zhuang, Y., Chu, J., & Zhang, S. (2011). Understanding the effect of foreign gene dosage on the physiology of Pichia pastoris by transcriptional analysis of key genes. Applied Microbiology and Biotechnology, 89, 1127–1135.

    Article  CAS  PubMed  Google Scholar 

  65. Shao, Z., Deng, W., Li, S., He, J., Ren, S., Huang, W., Lu, Y., Zhao, G., Cai, Z., & Wang, J. (2015). GlnR-mediated regulation of ectABCD transcription expands the role of the GlnR regulon to osmotic stress management. Journal of Bacteriology, 197, 3041–3047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Zhang, D., Guan, D., Liang, J., Guo, C., Xie, X., Zhang, C., Xu, Q., & Chen, N. (2014). Reducing lactate secretion by ldhA Deletion in l-glutamate-producing strain Corynebacterium glutamicum GDK-9. Brazilian Journal of Microbiology, 45, 1477–1483.

    Article  CAS  PubMed  Google Scholar 

  67. Liu, Y., Xu, Y., Ding, D., Wen, J., Zhu, B., & Zhang, D. (2018). Genetic engineering of Escherichia coli to improve l-phenylalanine production. BMC Biotechnology, 18, 5.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Wang, Z., Qin, Q., Zheng, Y., Li, F., Zhao, Y., & Chen, G. Q. (2021). Engineering the permeability of Halomonas bluephagenesis enhanced its chassis properties. Metabolic Engineering, 67, 53–66.

    Article  CAS  PubMed  Google Scholar 

  69. Li, R., Wang, M., Ren, Z., Ji, Y., Yin, M., Zhou, H., & Tang, S. K. (2021). Amycolatopsis aidingensis sp. nov., a halotolerant Actinobacterium, produces new secondary metabolites. Frontiers in Microbiology, 12, 743116.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Nelms, J., Edwards, R. M., Warwick, J., & Fotheringham, I. (1992). Novel mutations in the pheA gene of Escherichia coli K-12 which result in highly feedback inhibition-resistant variants of chorismate mutase/prephenate dehydratase. Applied and Environmental Microbiology, 58, 2592–2598.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Zhou, H., Liao, X., Wang, T., Du, G., & Chen, J. (2010). Enhanced l-phenylalanine biosynthesis by co-expression of pheA(fbr) and aroF(wt). Bioresource Technology, 101, 4151–4156.

    Article  CAS  PubMed  Google Scholar 

  72. Hamano, Y., Nicchu, I., Shimizu, T., Onji, Y., Hiraki, J., & Takagi, H. (2007). epsilon-Poly-l-lysine producer, Streptomyces albulus, has feedback-inhibition resistant aspartokinase. Applied Microbiology and Biotechnology, 76, 873–882.

    Article  CAS  PubMed  Google Scholar 

  73. Isogai, S., Matsushita, T., Imanishi, H., Koonthongkaew, J., Toyokawa, Y., Nishimura, A., Yi, X., Kazlauskas, R., & Takagi, H. (2021). High-level production of lysine in the yeast Saccharomyces cerevisiae by rational design of homocitrate synthase. Applied and Environmental Microbiology, 87, e0060021.

    Article  PubMed  Google Scholar 

  74. Zhang, J., Xu, M., Ge, X., Zhang, X., Yang, T., Xu, Z., & Rao, Z. (2017). Reengineering of the feedback-inhibition enzyme N-acetyl-l-glutamate kinase to enhance l-arginine production in Corynebacterium crenatum. Journal of Industrial Microbiology and Biotechnology, 44, 271–283.

    Article  CAS  PubMed  Google Scholar 

  75. Wang, T. W., Zhu, H., Ma, X. Y., Zhang, T., Ma, Y. S., & Wei, D. Z. (2006). Mutant library construction in directed molecular evolution: Casting a wider net. Molecular Biotechnology, 34, 55–68.

    Article  PubMed  Google Scholar 

  76. Reshetnikov, A. S., Khmelenina, V. N., Mustakhimov, I. I., Kalyuzhnaya, M., Lidstrom, M., & Trotsenko, Y. A. (2011). Diversity and phylogeny of the ectoine biosynthesis genes in aerobic, moderately halophilic methylotrophic bacteria. Extremophiles, 15, 653–663.

    Article  CAS  PubMed  Google Scholar 

  77. Harayama, S. (1998). Artificial evolution by DNA shuffling. Trends in Biotechnology, 16, 76–82.

    Article  CAS  PubMed  Google Scholar 

  78. Biot-Pelletier, D., & Martin, V. J. (2014). Evolutionary engineering by genome shuffling. Applied Microbiology and Biotechnology, 98, 3877–3887.

    Article  CAS  PubMed  Google Scholar 

  79. Stephanopoulos, G. (2002). Metabolic engineering by genome shuffling. Nature Biotechnology, 20, 666–668.

    Article  CAS  PubMed  Google Scholar 

  80. Zeng, W., Chen, G., Wu, H., Wang, J., Liu, Y., Guo, Y., & Liang, Z. (2016). Improvement of Bacillus subtilis for poly-gamma-glutamic acid production by genome shuffling. Microbial Biotechnology, 9, 824–833.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Li, S., Chen, X., Dong, C., Zhao, F., Tang, L., & Mao, Z. (2013). Combining genome shuffling and interspecific hybridization among Streptomyces improved epsilon-poly-l-lysine production. Applied Biochemistry and Biotechnology, 169, 338–350.

    Article  CAS  PubMed  Google Scholar 

  82. Li, S., Li, F., Chen, X. S., Wang, L., Xu, J., Tang, L., & Mao, Z. G. (2012). Genome shuffling enhanced epsilon-poly-l-lysine production by improving glucose tolerance of Streptomyces graminearus. Applied Biochemistry and Biotechnology, 166, 414–423.

    Article  CAS  PubMed  Google Scholar 

  83. Cao, X., Hou, L., Lu, M., Wang, C., & Zeng, B. (2010). Genome shuffling of Zygosaccharomyces rouxii to accelerate and enhance the flavour formation of soy sauce. Journal of the Science of Food and Agriculture, 90, 281–285.

    Article  CAS  PubMed  Google Scholar 

  84. Zheng, P., Liu, M., Liu, X. D., Du, Q. Y., Ni, Y., & Sun, Z. H. (2012). Genome shuffling improves thermotolerance and glutamic acid production of Corynebacterium glutamicum. World Journal of Microbiology and Biotechnology, 28, 1035–1043.

    Article  CAS  PubMed  Google Scholar 

  85. Huang, Q. G., Zeng, B. D., Liang, L., Wu, S. G., & Huang, J. Z. (2018). Genome shuffling and high-throughput screening of Brevibacterium flavum MDV1 for enhanced l-valine production. World Journal of Microbiology and Biotechnology, 34, 121.

    Article  PubMed  Google Scholar 

  86. Wang, L., Chen, X., Wu, G., Zeng, X., Ren, X., Li, S., Tang, L., & Mao, Z. (2016). Genome shuffling and gentamicin-resistance to improve epsilon-poly-l-lysine productivity of Streptomyces albulus W-156. Applied Biochemistry and Biotechnology, 180, 1601–1617.

    Article  CAS  PubMed  Google Scholar 

  87. Webb, B., & Sali, A. (2016). Comparative protein structure modeling using MODELLER. Current Protocols in Protein Science, 86, 2.9.1-2.9.37.

    Article  PubMed  Google Scholar 

  88. Webb, B., & Sali, A. (2021). Protein structure modeling with MODELLER. Methods in Molecular Biology, 2199, 239–255.

    Article  CAS  PubMed  Google Scholar 

  89. DiMaio, F. (2017). Rosetta structure prediction as a tool for solving difficult molecular replacement problems. Methods in Molecular Biology, 1607, 455–466.

    Article  CAS  PubMed  Google Scholar 

  90. Das, R., & Baker, D. (2008). Macromolecular modeling with Rosetta. Annual Review of Biochemistry, 77, 363–382.

    Article  CAS  PubMed  Google Scholar 

  91. Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Zidek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S. A. A., Ballard, A. J., Cowie, A., Romera-Paredes, B., Nikolov, S., Jain, R., Adler, J., … Hassabis, D. (2021). Highly accurate protein structure prediction with AlphaFold. Nature, 596, 583–589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Cramer, P. (2021). AlphaFold2 and the future of structural biology. Nature Structural and Molecular Biology, 28, 704–705.

    Article  CAS  PubMed  Google Scholar 

  93. Carvalho, H. F., Barbosa, A. J., Roque, A. C., Iranzo, O., & Branco, R. J. (2017). Integration of molecular dynamics based predictions into the optimization of de novo protein designs: Limitations and benefits. Methods in Molecular Biology, 1529, 181–201.

    Article  CAS  PubMed  Google Scholar 

  94. Czech, L., Hoppner, A., Kobus, S., Seubert, A., Riclea, R., Dickschat, J. S., Heider, J., Smits, S. H. J., & Bremer, E. (2019). Illuminating the catalytic core of ectoine synthase through structural and biochemical analysis. Scientific Reports, 9, 364.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Widderich, N., Kobus, S., Hoppner, A., Riclea, R., Seubert, A., Dickschat, J. S., Heider, J., Smits, S. H., & Bremer, E. (2016). Biochemistry and crystal structure of ectoine synthase: A metal-containing member of the cupin superfamily. PLoS ONE, 11, e0151285.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Chen, W., Zhang, S., Jiang, P., Yao, J., He, Y., Chen, L., Gui, X., Dong, Z., & Tang, S. Y. (2015). Design of an ectoine-responsive AraC mutant and its application in metabolic engineering of ectoine biosynthesis. Metabolic Engineering, 30, 149–155.

    Article  PubMed  Google Scholar 

  97. Salinas, V. H., & Ranganathan, R. (2018). Coevolution-based inference of amino acid interactions underlying protein function. eLife, 7, e34300.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Wu, Z., Liu, H., Xu, L., Chen, H. F., & Feng, Y. (2020). Algorithm-based coevolution network identification reveals key functional residues of the alpha/beta hydrolase subfamilies. The FASEB Journal, 34, 1983–1995.

    Article  CAS  PubMed  Google Scholar 

  99. Bhattacharya, S., Margheritis, E. G., Takahashi, K., Kulesha, A., D’Souza, A., Kim, I., Yoon, J. H., Tame, J. R. H., Volkov, A. N., Makhlynets, O. V., & Korendovych, I. V. (2022). NMR-guided directed evolution. Nature, 610, 389–393.

    Article  CAS  PubMed  Google Scholar 

  100. Mascotti, M. L. (2022). Resurrecting enzymes by ancestral sequence reconstruction. Methods in Molecular Biology, 2397, 111–136.

    Article  CAS  PubMed  Google Scholar 

  101. Cai, W., Pei, J., & Grishin, N. V. (2004). Reconstruction of ancestral protein sequences and its applications. BMC Ecology and Evolution, 4, 33.

    Google Scholar 

  102. Saelens, J. W., Sweeney, M. I., Viswanathan, G., Xet-Mull, A. M., Jurcic Smith, K. L., Sisk, D. M., Hu, D. D., Cronin, R. M., Hughes, E. J., Brewer, W. J., Coers, J., Champion, M. M., Champion, P. A., Lowe, C. B., Smith, C. M., Lee, S., Stout, J. E., & Tobin, D. M. (2022). An ancestral mycobacterial effector promotes dissemination of infection. Cell, 185, 4507-4525.e4518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Wang, T., Liang, C., Xing, W., Wu, W., Hou, Y., Zhang, L., Xiao, S., Xu, H., An, Y., Zheng, M., Liu, L., & Nie, L. (2020). Transcriptional factor engineering in microbes for industrial biotechnology. Journal of Chemical Technology and Biotechnology, 95, 3071–3078.

    Article  CAS  Google Scholar 

  104. Nicoll, C. R., Bailleul, G., Fiorentini, F., Mascotti, M. L., Fraaije, M. W., & Mattevi, A. (2020). Ancestral-sequence reconstruction unveils the structural basis of function in mammalian FMOs. Nature Structural and Molecular Biology, 27, 14–24.

    Article  CAS  PubMed  Google Scholar 

  105. Zhou, H. X., Rivas, G., & Minton, A. P. (2008). Macromolecular crowding and confinement: Biochemical, biophysical, and potential physiological consequences. Annual Review of Biophysics, 37, 375–397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Sanyal, N., Arentson, B. W., Luo, M., Tanner, J. J., & Becker, D. F. (2015). First evidence for substrate channeling between proline catabolic enzymes: A validation of domain fusion analysis for predicting protein–protein interactions. Journal of Biological Chemistry, 290, 2225–2234.

    Article  CAS  PubMed  Google Scholar 

  107. Wang, T., Qin, X., Liang, C., & Yuan, H. (2018). Engineering substrate channeling in biosystems for improved efficiency. Journal of Chemical Technology and Biotechnology, 93, 3364–3373.

    Article  CAS  Google Scholar 

  108. Dueber, J. E., Wu, G. C., Malmirchegini, G. R., Moon, T. S., Petzold, C. J., Ullal, A. V., Prather, K. L., & Keasling, J. D. (2009). Synthetic protein scaffolds provide modular control over metabolic flux. Nature Biotechnology, 27, 753–759.

    Article  CAS  PubMed  Google Scholar 

  109. Conrado, R. J., Wu, G. C., Boock, J. T., Xu, H., Chen, S. Y., Lebar, T., Turnsek, J., Tomsic, N., Avbelj, M., Gaber, R., Koprivnjak, T., Mori, J., Glavnik, V., Vovk, I., Bencina, M., Hodnik, V., Anderluh, G., Dueber, J. E., Jerala, R., & DeLisa, M. P. (2012). DNA-guided assembly of biosynthetic pathways promotes improved catalytic efficiency. Nucleic Acids Research, 40, 1879–1889.

    Article  CAS  PubMed  Google Scholar 

  110. Widderich, N., Czech, L., Elling, F. J., Konneke, M., Stoveken, N., Pittelkow, M., Riclea, R., Dickschat, J. S., Heider, J., & Bremer, E. (2016). Strangers in the archaeal world: Osmostress-responsive biosynthesis of ectoine and hydroxyectoine by the marine thaumarchaeon Nitrosopumilus maritimus. Environmental Microbiology, 18, 1227–1248.

    Article  CAS  PubMed  Google Scholar 

  111. Schulz, A., Stoveken, N., Binzen, I. M., Hoffmann, T., Heider, J., & Bremer, E. (2017). Feeding on compatible solutes: A substrate-induced pathway for uptake and catabolism of ectoines and its genetic control by EnuR. Environmental Microbiology, 19, 926–946.

    Article  CAS  PubMed  Google Scholar 

  112. Schulz, A., Hermann, L., Freibert, S. A., Bonig, T., Hoffmann, T., Riclea, R., Dickschat, J. S., Heider, J., & Bremer, E. (2017). Transcriptional regulation of ectoine catabolism in response to multiple metabolic and environmental cues. Environmental Microbiology, 19, 4599–4619.

    Article  CAS  PubMed  Google Scholar 

  113. Sauer, T., & Galinski, E. A. (1998). Bacterial milking: A novel bioprocess for production of compatible solutes. Biotechnology and Bioengineering, 57, 306–313.

    Article  CAS  PubMed  Google Scholar 

  114. Lang, Y. J., Bai, L., Ren, Y. N., Zhang, L. H., & Nagata, S. (2011). Production of ectoine through a combined process that uses both growing and resting cells of Halomonas salina DSM 5928T. Extremophiles, 15, 303–310.

    Article  CAS  PubMed  Google Scholar 

  115. Schubert, T., Maskow, T., Benndorf, D., Harms, H., & Breuer, U. (2007). Continuous synthesis and excretion of the compatible solute ectoine by a transgenic, nonhalophilic bacterium. Applied Environmental Microbiology, 73, 3343–3347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Ning, Y., Wu, X., Zhang, C., Xu, Q., Chen, N., & Xie, X. (2016). Pathway construction and metabolic engineering for fermentative production of ectoine in Escherichia coli. Metabolic Engineering, 36, 10–18.

    Article  CAS  PubMed  Google Scholar 

  117. Bethlehem, L., & Moritz, K. D. (2020). Boosting Escherichia coli’s heterologous production rate of ectoines by exploiting the non-halophilic gene cluster from Acidiphilium cryptum. Extremophiles, 24, 733–747.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Perez-Garcia, F., Ziert, C., Risse, J. M., & Wendisch, V. F. (2017). Improved fermentative production of the compatible solute ectoine by Corynebacterium glutamicum from glucose and alternative carbon sources. Journal of Biotechnology, 258, 59–68.

    Article  CAS  PubMed  Google Scholar 

  119. Giesselmann, G., Dietrich, D., Jungmann, L., Kohlstedt, M., Jeon, E. J., Yim, S. S., Sommer, F., Zimmer, D., Muhlhaus, T., Schroda, M., Jeong, K. J., Becker, J., & Wittmann, C. (2019). Metabolic engineering of Corynebacterium glutamicum for high-level ectoine production: Design, combinatorial assembly, and implementation of a transcriptionally balanced heterologous ectoine pathway. Biotechnology Journal, 14, e1800417.

    Article  PubMed  Google Scholar 

  120. Cho, S., Lee, Y. S., Chai, H., Lim, S. E., Na, J. G., & Lee, J. (2022). Enhanced production of ectoine from methane using metabolically engineered Methylomicrobium alcaliphilum 20Z. Biotechnology for Biofuels and Bioproducts, 15, 5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Cantera, S., Lebrero, R., Rodríguez, S., García-Encina, P. A., & Muñoz, R. (2017). Ectoine bio-milking in methanotrophs: A step further towards methane-based bio-refineries into high added-value products. Chemical Engineering Journal, 328, 44–48.

    Article  CAS  Google Scholar 

  122. Cantera, S., Phandanouvong-Lozano, V., Pascual, C., García-Encina, P. A., Lebrero, R., Hay, A., & Muñoz, R. (2020). A systematic comparison of ectoine production from upgraded biogas using Methylomicrobium alcaliphilum and a mixed haloalkaliphilic consortium. Waste Management, 102, 773–781.

    Article  CAS  PubMed  Google Scholar 

  123. Zhang, S., Fang, Y., Zhu, L., Li, H., Wang, Z., Li, Y., & Wang, X. (2021). Metabolic engineering of Escherichia coli for efficient ectoine production. Systems Microbiology and Biomanufacturing, 1, 444–458.

    Article  CAS  Google Scholar 

  124. Fatollahi, P., Ghasemi, M., Yazdian, F., & Sadeghi, A. (2021). Ectoine production in bioreactor by Halomonas elongata DSM2581: Using MWCNT and Fe-nanoparticle. Biotechnology Progress, 37, e3073.

    Article  CAS  PubMed  Google Scholar 

  125. Chen, W.-C., Yuan, F.-W., Wang, L.-F., Chien, C.-C., & Wei, Y.-H. (2020). Ectoine production with indigenous Marinococcus sp. MAR2 isolated from the marine environment. Preparative Biochemistry and Biotechnology, 50, 74–81.

    Article  CAS  PubMed  Google Scholar 

  126. Czech, L., Stoveken, N., & Bremer, E. (2016). EctD-mediated biotransformation of the chemical chaperone ectoine into hydroxyectoine and its mechanosensitive channel-independent excretion. Microbial Cell Factories, 15, 126.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The publication of this paper was financially supported by a Fund from Anhui Polytechnic University (2022YQQ063). We apologize for authors whose publications relevant to this paper's topic were not cited for various reasons.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianwen Wang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest in this publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Liu, K., Kong, F. et al. Multiple Functions of Compatible Solute Ectoine and Strategies for Constructing Overproducers for Biobased Production. Mol Biotechnol (2023). https://doi.org/10.1007/s12033-023-00827-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12033-023-00827-7

Keywords

Navigation