Skip to main content
Log in

Single-Cell Sequencing Data Analysis Unveiled HDAC1 as the Therapeutic Target for Chronic Pancreatitis

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Chronic pancreatitis (CP) as a progressive inflammatory disorder, remains untreatable. The novel treatment strategy for CP is imperative. We attempted to explore the therapeutic biomarkers for CP. The single-cell sequencing data were retrieved from Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) in idiopathic CP were identified, followed by function and pathway annotation, and PPI network established. DEGs of interest were verified in human tissue samples. The function of candidate biomarker was determined in the murine model with CP. A total of 208 genes were specially differentially expressed in idiopathic patients. Functional enrichment analysis showed DEGs were mainly enriched in glycogen catabolic process, RNA splicing, and glucagon signaling pathway. A PPI network centered on HDAC1 was constructed. HDAC1 was overexpressed in CP patients. The murine model with CP was induced by repetitive cerulein treatment. Silencing sh-HDAC1 treatment reversed cerulein-induced inflammatory cells accumulation, high expression of TGF-β1, and collagen 1 in pancreas in vivo. HDAC1 might be served as potential biomarker for CP. The present study provided insights into the molecular mechanism of CP that may be useful in further investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The datasets used and analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Weiss, F. U., Laemmerhirt, F., & Lerch, M. M. (2019). Etiology and risk factors of acute and chronic pancreatitis. Visceral Medicine, 35, 73–81.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Tirkes, T., Shah, Z. K., Takahashi, N., Grajo, J. R., Chang, S. T., Venkatesh, S. K., et al. (2019). Reporting standards for chronic pancreatitis by using CT, MRI, and MR cholangiopancreatography: The Consortium for the Study of Chronic Pancreatitis, Diabetes, and Pancreatic Cancer. Radiology, 290, 207–215.

    Article  PubMed  Google Scholar 

  3. Whitcomb, D. C. (2010). Genetic aspects of pancreatitis. Annual Review of Medicine, 61, 413–424.

    Article  CAS  PubMed  Google Scholar 

  4. Kumar, S., Ooi, C. Y., Werlin, S., Abu-El-Haija, M., Barth, B., Bellin, M. D., et al. (2016). Risk factors associated with pediatric acute recurrent and chronic pancreatitis: Lessons from INSPPIRE. JAMA Pediatrics, 170, 562–569.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Hu, C., Wen, L., Deng, L., Zhang, C., Lugea, A., Su, H.-Y., et al. (2017). The differential role of human cationic trypsinogen (PRSS1) p. R122H mutation in hereditary and nonhereditary chronic pancreatitis: A systematic review and meta-analysis. Gastroenterology Research and Practice, 2017, 9505460.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kleeff, J., Whitcomb, D., Shimosegawa, T., Esposito, I., Lerch, M., Gress, T., et al. (2017). Chronic pancreatitis. Nature Reviews Disease Primers, 3, 17060.

    Article  PubMed  Google Scholar 

  7. Habtezion, A. (2015). Inflammation in acute and chronic pancreatitis. Current Opinion in Gastroenterology, 31, 395–399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Deng, X., Wang, L., Elm, M. S., Gabazadeh, D., Diorio, G. J., Eagon, P. K., et al. (2005). Chronic alcohol consumption accelerates fibrosis in response to cerulein-induced pancreatitis in rats. American Journal of Pathology, 166, 93–106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lin, Y., Chen, Y., Feng, W., Hua, R., Zhang, J., Huo, Y., et al. (2021). Neddylation pathway alleviates chronic pancreatitis by reducing HIF1α-CCL5-dependent macrophage infiltration. Cell Death and Disease, 12, 1–11.

    Article  Google Scholar 

  10. Schmitz-Winnenthal, H., Pietsch, D. H., Schimmack, S., Bonertz, A., Udonta, F., Ge, Y., et al. (2010). Chronic pancreatitis is associated with disease-specific regulatory T-cell responses. Gastroenterology, 138, 1178–1188.

    Article  PubMed  Google Scholar 

  11. Xue, J., Sharma, V., Hsieh, M. H., Chawla, A., Murali, R., Pandol, S. J., et al. (2015). Alternatively activated macrophages promote pancreatic fibrosis in chronic pancreatitis. Nature Communications, 6, 7158.

    Article  CAS  PubMed  Google Scholar 

  12. Xue, J., Zhao, Q., Sharma, V., Nguyen, L. P., Lee, Y. N., Pham, K. L., et al. (2016). Aryl hydrocarbon receptor ligands in cigarette smoke induce production of interleukin-22 to promote pancreatic fibrosis in models of chronic pancreatitis. Gastroenterology, 151, 1206–1217.

    Article  CAS  PubMed  Google Scholar 

  13. Bansod, S., Doijad, N., & Godugu, C. (2020). Berberine attenuates severity of chronic pancreatitis and fibrosis via AMPK-mediated inhibition of TGF-β1/Smad signaling and M2 polarization. Toxicology and Applied Pharmacology, 403, 115162.

    Article  CAS  PubMed  Google Scholar 

  14. Glaubitz, J., Wilden, A., Golchert, J., Homuth, G., Völker, U., Bröker, B. M., et al. (2022). In mouse chronic pancreatitis CD25+FOXP3+ regulatory T cells control pancreatic fibrosis by suppression of the type 2 immune response. Nature Communications, 13, 4502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Saad, M. I., Weng, T., Lundy, J., Gearing, L. J., West, A. C., Harpur, C. M., et al. (2022). Blockade of the protease ADAM17 ameliorates experimental pancreatitis. Proceedings of the National Academy of Sciences of the United States of America, 119, e2213744119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Butler, A., Hoffman, P., Smibert, P., Papalexi, E., & Satija, R. (2018). Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nature Biotechnology, 36, 411–420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lun, A. T., McCarthy, D. J., & Marioni, J. C. (2016). A step-by-step workflow for low-level analysis of single-cell RNA-Seq data with Bioconductor. F1000Res, 5, 2122.

    PubMed  PubMed Central  Google Scholar 

  18. Tirosh, I., Izar, B., Prakadan, S. M., Wadsworth, M. H., II., Treacy, D., Trombetta, J. J., et al. (2016). Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-Seq. Science, 352, 189–196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wu, T., Hu, E., Xu, S., Chen, M., Guo, P., Dai, Z., et al. (2021). clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. The Innovation, 2, 100141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Szklarczyk, D., Franceschini, A., Wyder, S., Forslund, K., Heller, D., Huerta-Cepas, J., et al. (2014). STRING v10: Protein–protein interaction networks, integrated over the tree of life. Nucleic Acids Research. https://doi.org/10.1093/nar/gku1003

    Article  PubMed  PubMed Central  Google Scholar 

  21. Bhasin, D. K., Singh, G., Rana, S. S., Chowdry, S. M., Shafiq, N., Malhotra, S., et al. (2009). Clinical profile of idiopathic chronic pancreatitis in North India. Clinical Gastroenterology and Hepatology: The Official Clinical Practice Journal of the American Gastroenterological Association, 7, 594–599.

    Article  PubMed  Google Scholar 

  22. Kim, H. (2008). Cerulein pancreatitis: Oxidative stress, inflammation, and apoptosis. Gut and Liver, 2, 74–80.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Neuschwander-Tetri, B. A., Burton, F. R., Presti, M. E., Britton, R. S., Janney, C. G., Garvin, P. R., et al. (2000). Repetitive self-limited acute pancreatitis induces pancreatic fibrogenesis in the mouse. Digestive Diseases and Sciences, 45, 665–674.

    Article  CAS  PubMed  Google Scholar 

  24. McGuigan, A., Kelly, P., Turkington, R. C., Jones, C., Coleman, H. G., & McCain, R. S. (2018). Pancreatic cancer: A review of clinical diagnosis, epidemiology, treatment and outcomes. World Journal of Gastroenterology, 24, 4846–4861.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Wu, J., Mulatibieke, T., Ni, J., Han, X., Li, B., Zeng, Y., et al. (2017). Dichotomy between receptor-interacting protein 1- and receptor-interacting protein 3-mediated necroptosis in experimental pancreatitis. The American Journal of Pathology, 187, 1035–1048.

    Article  CAS  PubMed  Google Scholar 

  26. Manohar, M., Verma, A. K., Venkateshaiah, S. U., & Mishra, A. (2018). Role of eosinophils in the initiation and progression of pancreatitis pathogenesis. American Journal of Physiology Gastrointestinal and Liver Physiology, 314, G211–G222.

    Article  PubMed  Google Scholar 

  27. Zheng, L., Xue, J., Jaffee, E. M., & Habtezion, A. (2013). Role of immune cells and immune-based therapies in pancreatitis and pancreatic ductal adenocarcinoma. Gastroenterology, 144, 1230–1240.

    Article  PubMed  Google Scholar 

  28. Lee, B., Adamska, J. Z., Namkoong, H., Bellin, M. D., Wilhelm, J., Szot, G. L., et al. (2020). Distinct immune characteristics distinguish hereditary and idiopathic chronic pancreatitis. The Journal of Clinical Investigation, 130, 2705–2711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ye, L., Robertson, M. A., Hesselson, D., Stainier, D. Y., & Anderson, R. M. (2015). Glucagon is essential for alpha cell transdifferentiation and beta cell neogenesis. Development, 142, 1407–1417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yadav, S. S., & Chouhan, U. (2018). Analysis of protein–protein interaction network of laminopathy based on topological properties. Biomedical and Pharmacology Journal, 11, 1091–1103.

    Article  Google Scholar 

  31. Shakespear, M. R., Halili, M. A., Irvine, K. M., Fairlie, D. P., & Sweet, M. J. (2011). Histone deacetylases as regulators of inflammation and immunity. Trends in Immunology, 32, 335–343.

    Article  CAS  PubMed  Google Scholar 

  32. Gonneaud, A., Gagné, J. M., Turgeon, N., & Asselin, C. (2014). The histone deacetylase Hdac1 regulates inflammatory signalling in intestinal epithelial cells. Journal of Inflammation, 11, 1–10.

    Article  Google Scholar 

  33. Guo, C.-J., Xie, J.-J., Hong, R.-H., Pan, H.-S., Zhang, F.-G., & Liang, Y.-M. (2019). Puerarin alleviates streptozotocin (STZ)-induced osteoporosis in rats through suppressing inflammation and apoptosis via HDAC1/HDAC3 signaling. Biomedicine and Pharmacotherapy, 115, 108570.

    Article  CAS  PubMed  Google Scholar 

  34. Deng, X., He, Y., Miao, X., & Yu, B. (2021). ATF4-mediated histone deacetylase HDAC1 promotes the progression of acute pancreatitis. Cell Death and Disease, 12, 5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ouyang, C., Huang, L., Ye, X., Ren, M., & Han, Z. (2022). HDAC1 promotes myocardial fibrosis in diabetic cardiomyopathy by inhibiting BMP-7 transcription through histone deacetylation. Experimental and Clinical Endocrinology and Diabetes, 130(10), 660–670.

    Article  CAS  PubMed  Google Scholar 

  36. Lai, L., Cheng, P., Yan, M., Gu, Y., & Xue, J. (2019). Aldosterone induces renal fibrosis by promoting HDAC1 expression, deacetylating H3K9 and inhibiting klotho transcription. Molecular Medicine Reports, 19, 1803–1808.

    CAS  PubMed  Google Scholar 

  37. Nural-Guvener, H. F., Zakharova, L., Nimlos, J., Popovic, S., Mastroeni, D., & Gaballa, M. A. (2014). HDAC class I inhibitor, Mocetinostat, reverses cardiac fibrosis in heart failure and diminishes CD90+ cardiac myofibroblast activation. Fibrogenesis and Tissue Repair, 7, 10.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Bombardo, M., Saponara, E., Malagola, E., Chen, R., Seleznik, G. M., Haumaitre, C., et al. (2017). Class I histone deacetylase inhibition improves pancreatitis outcome by limiting leukocyte recruitment and acinar-to-ductal metaplasia. British Journal of Pharmacology, 174, 3865–3880.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bombardo, M., Chen, R., Malagola, E., Saponara, E., Hills, A. P., Graf, R., et al. (2018). Inhibition of Class I histone deacetylases abrogates tumor growth factor β expression and development of fibrosis during chronic pancreatitis. Molecular Pharmacology, 94, 793–801.

    Article  CAS  PubMed  Google Scholar 

  40. Zhang, S.-K., Cui, N.-Q., Zhuo, Y.-Z., Hu, J.-G., Liu, J.-H., Li, D.-H., et al. (2020). Modified Xiaochaihu Decoction () promotes collagen degradation and inhibits pancreatic fibrosis in chronic pancreatitis rats. Chinese Journal of Integrative Medicine, 26, 599–603.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Li, R. Single-Cell Sequencing Data Analysis Unveiled HDAC1 as the Therapeutic Target for Chronic Pancreatitis. Mol Biotechnol 66, 68–78 (2024). https://doi.org/10.1007/s12033-023-00718-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-023-00718-x

Keywords

Navigation