Skip to main content
Log in

Target Metabolome and Transcriptome Analysis Reveal Molecular Mechanism Associated with Changes of Tea Quality at Different Development Stages

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

This study aimed to explore the molecular mechanisms underlying the differential quality of tea made from leaves at different development stages. Fresh Camellia sinensis (L.) O. Kuntze “Sichuan Colonial” leaves of various development stages, from buds to old leaves, were subjected to transcriptome sequencing and metabolome analysis, and the DESeq package was used for differential expression analysis, followed by functional enrichment analyses and protein interaction analysis. Target metabolome analysis indicated that the contents of most compounds, including theobromine and epicatechin gallate, were lowest in old leaves, and transcriptome analysis revealed that DEGs were significantly involved in extracellular regions and phenylpropanoid biosynthesis, photosynthesis-related pathways, and the oleuropein steroid biosynthesis pathway. Protein–protein interaction analysis identified LOC114256852 as a hub gene. Caffeine, theobromine, l-theanine, and catechins were the main metabolites of the tea leaves, and the contents of all four main metabolites were the lowest in old leaves. Phenylpropanoid biosynthesis, photosynthesis, and brassinosteroid biosynthesis may be important targets for breeding efforts to improve tea quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zhou, C., Mei, X., Rothenberg, D. O. N., Yang, Z., Zhang, W., Wan, S., Yang, H., & Zhang, L. (2020). Metabolome and transcriptome analysis reveals putative genes involved in Anthocyanin accumulation and coloration in white and pink tea (Camellia sinensis) flower. Molecules, 25, 190.

    Article  CAS  Google Scholar 

  2. Zhao, L., Chen, C., Wang, Y., Shen, J., & Ding, Z. (2019). Conserved microRNA act boldly during sprout development and quality formation in Pingyang Tezaocha (Camellia sinensis). Frontiers in genetics, 10, 237.

    Article  CAS  Google Scholar 

  3. Liu, S., An, Y., Li, F., Li, S., Liu, L., Zhou, Q., Zhao, S., & Wei, C. (2018). Genome-wide identification of simple sequence repeats and development of polymorphic SSR markers for genetic studies in tea plant (Camellia sinensis). Molecular Breeding, 38, 1–13.

    Article  Google Scholar 

  4. Rothenberg, D. O. N., Zhou, C., & Zhang, L. (2018). A review on the weight-loss effects of oxidized tea polyphenols. Molecules, 23, 1176.

    Article  Google Scholar 

  5. Rothenberg, D. O. N., & Zhang, L. (2019). Mechanisms underlying the anti-depressive effects of regular tea consumption. Nutrients, 11, 1361.

    Article  CAS  Google Scholar 

  6. Fang, W.-P., Meinhardt, L. W., Tan, H.-W., Zhou, L., Mischke, S., & Zhang, D. (2014). Varietal identification of tea (Camellia sinensis) using nanofluidic array of single nucleotide polymorphism (SNP) markers. Horticulture research, 1, 1–8.

    Article  Google Scholar 

  7. Guo, F., Guo, Y., Wang, P., Wang, Y., & Ni, D. (2017). Transcriptional profiling of catechins biosynthesis genes during tea plant leaf development. Planta, 246, 1139–1152.

    Article  CAS  Google Scholar 

  8. Ashihara, H., Deng, W. W., Mullen, W., & Crozier, A. (2010). Distribution and biosynthesis of flavan-3-ols in Camellia sinensis seedlings and expression of genes encoding biosynthetic enzymes. Phytochemistry, 71, 559–566.

    Article  CAS  Google Scholar 

  9. Eungwanichayapant, P., & Popluechai, S. (2009). Accumulation of catechins in tea in relation to accumulation of mRNA from genes involved in catechin biosynthesis. Plant Physiology and Biochemistry, 47, 94–97.

    Article  CAS  Google Scholar 

  10. Wu, H., Chen, D., Li, J., Yu, B., Qiao, X., Huang, H., & He, Y. (2013). De novo characterization of leaf transcriptome using 454 sequencing and development of EST-SSR markers in tea (Camellia sinensisCamellia sinensis). Plant Molecular Biology Reporter, 2013(31), 524–538.

    Article  Google Scholar 

  11. Wu, Z.-J., Li, X.-H., Liu, Z.-W., Xu, Z.-S., & Zhuang, J. (2014). De novo assembly and transcriptome characterization: Novel insights into catechins biosynthesis in Camellia sinensis. BMC Plant Biology, 14, 1–16.

    Article  CAS  Google Scholar 

  12. Li, F.-D., Tong, W., Xia, E.-H., & Wei, C.-L. (2019). Optimized sequencing depth and de novo assembler for deeply reconstructing the transcriptome of the tea plant, an economically important plant species. BMC Bioinformatics, 20, 1–11.

    Article  Google Scholar 

  13. Wen, G. (2017). A simple process of RNA-sequence analyses by Hisat2, Htseq and DESeq2. In Proceedings of the 2017 international conference on biomedical engineering and bioinformatics.

  14. Trapnell, C., Williams, B. A., Pertea, G., Mortazavi, A., Kwan, G., Van Baren, M. J., Salzberg, S. L., Wold, B. J., & Pachter, L. (2010). Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nature Biotechnology, 28, 511–515.

    Article  CAS  Google Scholar 

  15. Anders, S., & Huber, W. (2012). Differential expression of RNA-Seq data at the gene level–the DESeq package. European Molecular Biology Laboratory (EMBL).

  16. Kolde, R., & Kolde, M. R. (2015). Package ‘pheatmap.’ R package (vol. 1, p. 790).

  17. Alexa, A., Rahnenfuhrer, J., Alexa, M. A. and Suggests, A. (2016). Package ‘topGO’.

  18. Jin, J., Tian, F., Yang, D.-C., Meng, Y.-Q., Kong, L., Luo, J., & Gao, G. (2016). PlantTFDB 4.0: Toward a central hub for transcription factors and regulatory interactions in plants. Nucleic Acids Research, 45(D1), D1040–D1045.

  19. Szklarczyk, D., Franceschini, A., Wyder, S., Forslund, K., Heller, D., Huerta-Cepas, J., Simonovic, M., Roth, A., Santos, A., & Tsafou, K. P. (2015). STRING v10: Protein–protein interaction networks, integrated over the tree of life. Nucleic Acids Research, 43(D1), D447–D452.

    Article  CAS  Google Scholar 

  20. Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., Amin, N., Schwikowski, B., & Ideker, T. (2003). Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Research, 13, 2498–2504.

    Article  CAS  Google Scholar 

  21. Ninomiya, M., Unten, L., & Kim, M. (1997). Chemical and physicochemical properties of green tea polyphenols. In T. Yamamoto, L. R. Juneja, D. C. Chu, & M. Kim (Eds.), Chemistry and applications of green tea (pp. 23–35). CRC Press.

  22. Jin, J., Zhou, C., Ma, C., Yao, M., Ma, J., & Chen, L. (2014). Identification on purine alkaloids of representative tea germplasms in China. Journal of Plant Genetic Resources 2014(15), 285.

    Google Scholar 

  23. Xia, E.-H., Zhang, H.-B., Sheng, J., Li, K., Zhang, Q.-J., Kim, C., Zhang, Y., Liu, Y., Zhu, T., & Li, W. (2017). The tea tree genome provides insights into tea flavor and independent evolution of caffeine biosynthesis. Molecular Plant, 10, 866–877.

    Article  CAS  Google Scholar 

  24. Feng, L., Gao, M.-J., Hou, R.-Y., Hu, X.-Y., Zhang, L., Wan, X.-C., & Wei, S. (2014). Determination of quality constituents in the young leaves of albino tea cultivars. Food Chemistry, 155, 98–104.

    Article  CAS  Google Scholar 

  25. Yang, C., Hu, Z., Lu, M., Li, P., Tan, J., Chen, M., Lv, H., Zhu, Y., Zhang, Y., & Guo, L. (2018). Application of metabolomics profiling in the analysis of metabolites and taste quality in different subtypes of white tea. Food Research International, 106, 909–919.

    Article  CAS  Google Scholar 

  26. Du, G.-J., Zhang, Z., Wen, X.-D., Yu, C., Calway, T., Yuan, C.-S., & Wang, C.-Z. (2012). Epigallocatechin gallate (EGCG) is the most effective cancer chemopreventive polyphenol in green tea. Nutrients, 4, 1679–1691.

    Article  CAS  Google Scholar 

  27. Tounekti, T., Joubert, E., Hernández, I., & Munné-Bosch, S. (2013). Improving the polyphenol content of tea. Critical Reviews in Plant Sciences, 32, 192–215.

    Article  CAS  Google Scholar 

  28. Lin, Y.-S., Tsai, Y.-J., Tsay, J.-S., & Lin, J.-K. (2003). Factors affecting the levels of tea polyphenols and caffeine in tea leaves. Journal of Agricultural and Food Chemistry, 51, 1864–1873.

    Article  CAS  Google Scholar 

  29. Park, J.-S., Kim, J.-B., Hahn, B.-S., Kim, K.-H., Ha, S.-H., Kim, J.-B., & Kim, Y.-H. (2004). EST analysis of genes involved in secondary metabolism in Camellia sinensis (tea), using suppression subtractive hybridization. Plant Science, 166, 953–961.

    Article  CAS  Google Scholar 

  30. George, V. C., Dellaire, G., & Rupasinghe, H. V. (2017). Plant flavonoids in cancer chemoprevention: Role in genome stability. The Journal of Nutritional Biochemistry, 45, 1–14.

    Article  CAS  Google Scholar 

  31. Wang, T.-Y., Li, Q., & Bi, K.-S. (2018). Bioactive flavonoids in medicinal plants: Structure, activity and biological fate. Asian Journal of Pharmaceutical Sciences, 13, 12–23.

    Article  Google Scholar 

  32. Li, X., Zhang, L., Ahammed, G. J., Li, Z.-X., Wei, J.-P., Shen, C., Yan, P., Zhang, L.-P., & Han, W.-Y. (2017). Nitric oxide mediates brassinosteroid-induced flavonoid biosynthesis in Camellia sinensis L. Journal of Plant Physiology, 214, 145–151.

    Article  CAS  Google Scholar 

  33. Li, X., Zhang, L.-P., Zhang, L., Yan, P., Ahammed, G. J., & Han, W.-Y. (2019). Methyl salicylate enhances flavonoid biosynthesis in tea leaves by stimulating the phenylpropanoid pathway. Molecules, 24, 362.

    Article  Google Scholar 

  34. Li, X., Zhang, L., Ahammed, G. J., Li, Z.-X., Wei, J.-P., Shen, C., Yan, P., Zhang, L.-P., & Han, W.-Y. (2017). Stimulation in primary and secondary metabolism by elevated carbon dioxide alters green tea quality in Camellia sinensis L. Scientific Reports, 7, 1–12.

    Google Scholar 

  35. Li, Z.-X., Yang, W.-J., Ahammed, G. J., Shen, C., Yan, P., Li, X., & Han, W.-Y. (2016). Developmental changes in carbon and nitrogen metabolism affect tea quality in different leaf position. Plant Physiology and Biochemistry, 106, 327–335.

    Article  CAS  Google Scholar 

  36. Zhou, H., Xu, M., Pan, H., & Yu, X. (2015). Leaf-age effects on temperature responses of photosynthesis and respiration of an alpine oak, Quercus aquifolioides, in southwestern China. Tree Physiology, 35, 1236–1248.

    Article  CAS  Google Scholar 

  37. Planas-Riverola, A., Gupta, A., Betegón-Putze, I., Bosch, N., Ibañes, M., & Caño-Delgado, A. I. (2019). Brassinosteroid signaling in plant development and adaptation to stress. Development, 146(5), dev151894.

  38. Jiang, Y.-P., Cheng, F., Zhou, Y.-H., Xia, X.-J., Mao, W.-H., Shi, K., Chen, Z.-X., & Yu, J.-Q. (2012). Hydrogen peroxide functions as a secondary messenger for brassinosteroids-induced CO2 assimilation and carbohydrate metabolism in Cucumis sativus. Journal of Zhejiang University Science B, 13, 811–823.

    Article  CAS  Google Scholar 

  39. Li, X., Ahammed, G. J., Li, Z.-X., Zhang, L., Wei, J.-P., Shen, C., Yan, P., Zhang, L.-P., & Han, W.-Y. (2016). Brassinosteroids improve quality of summer tea (Camellia sinensis L.) by balancing biosynthesis of polyphenols and amino acids. Frontiers in Plant Science, 7, 1304.

Download references

Funding

This study was supported by Key R&D Program of Science and Technology in Tibet Autonomous Region, China (Grant No. XZ202001ZY0035N), Tibet Key Research and Development Program (Grant No. XZ202001ZY004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-qiang Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Zh., Zhang, Gq., Zhang, Zw. et al. Target Metabolome and Transcriptome Analysis Reveal Molecular Mechanism Associated with Changes of Tea Quality at Different Development Stages. Mol Biotechnol 65, 52–60 (2023). https://doi.org/10.1007/s12033-022-00525-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-022-00525-w

Keywords

Navigation