Skip to main content
Log in

Application of CRISPR-Mediated Gene Editing for Crop Improvement

  • Review
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Plant gene editing has become an important molecular tool to revolutionize modern breeding of crops. Over the past years, remarkable advancement has been made in developing robust and efficient editing methods for plants. Despite a variety of available genome editing methods, the discovery of most recent system of clustered regularly interspaced short palindromic repeats–CRISPR-associated proteins (CRISPR-Cas) has been one of the biggest advancement in this path, with being the most efficient approach for genome manipulation. Until recently, genetic manipulations were confined to methods, like Agrobacterium-mediated transformations, zinc-finger nucleases, and TAL effector nucleases. However this technology supersedes all other methods for genetic modification. This RNA-guided CRISPR-Cas system is being rapidly developed with enhanced functionalities for better use and greater possibilities in biological research. In this review, we discuss and sum up the application of this simple yet powerful tool of CRISPR-Cas system for crop improvement with recent advancement in this technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

CRISPR:

Clustered regularly interspaced palindromic repeats

TALEN:

Transcription activator-like effector nucleases

ZFN:

Zinc-finger nucleases

NHEJ:

Non-homologous end joining

HE:

Homing endonuclease

DSB:

Double-strand break

CRD:

Central repeat domain

RVD:

Repeat variable di-residue

PAM:

Protospacer adjacent motif

References

  1. Xiong, J. S., Ding, J., & Li, Y. (2015). Genome-editing technologies and their potential application in horticultural crop breeding. Horticulture Research, 2, 1–10.

    Article  CAS  Google Scholar 

  2. Perez-Pinera, P., Ousterout, D. G., & Gersbach, C. A. (2012). Advances in targeted genome editing. Current Opinion in Chemical Biology, 16, 268–277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Tsai, S. Q., & Joung, J. K. (2014). What’s changed with genome editing? Cell Stem Cell, 15, 3–4.

    Article  CAS  PubMed  Google Scholar 

  4. Ceasar, S. A., Rajan, V., Prykhozhij, S. V., Berman, J. N., & Ignacimuthu, S. (2016). Insert, remove or replace: A highly advanced genome editing system using CRISPR/Cas9. Biochimica et Biophysica Acta—Molecular Cell Research, 1863, 2333–2344.

    Article  CAS  Google Scholar 

  5. Zhang, Y., Massel, K., Godwin, I. D., & Gao, C. (2018). Applications and potential of genome editing in crop improvement. Genome Biology, 19, 210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chibani-Chennoufi, S., Bruttin, A., Dillmann, M. L., & Brüssow, H. (2004). Phage-host interaction: An ecological perspective. Journal of Bacteriology, 186, 3677–3686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Barrangou, R., Fremaux, C., Deveau, H., Richards, M., Boyaval, P., Moineau, S., Romero, D. A., & Horvath, P. (2007). CRISPR provides acquired resistance against viruses in prokaryotes. Science, 315, 1709–1712.

    Article  CAS  PubMed  Google Scholar 

  8. Sturino, J. M., & Klaenhammer, T. R. (2006). Engineered bacteriophage-defence systems in bioprocessing. Nature Reviews Microbiology, 4, 395–404.

    Article  CAS  PubMed  Google Scholar 

  9. Brouns, S. J., Jore, M. M., Lundgren, M., Westra, E. R., Slijkhuis, R. J., Snijders, A. P., Dickman, M. J., Makarova, K. S., Koonin, E. V., & Van Der Oost, J. (2008). Small CRISPR RNAs guide antiviral defense in prokaryotes. Science, 321, 960–964.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Terns, M. P. (2018). CRISPR-based technologies: Impact of RNA-targeting systems. Molecular Cell, 72, 404–412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bandopadhyay, A., Mazumdar, S., Yin, X., & Quick, W. P. (2017). CRISPR: From prokaryotic immune systems to plant genome editing tools. In S. Tsang (Ed.), Precision medicine, CRISPR, and genome engineering. Advances in experimental medicine and biology (pp. 101–120). Springer.

    Google Scholar 

  12. Sharma, S., Kaur, R., & Singh, A. (2017). Recent advances in CRISPR/Cas mediated genome editing for crop improvement. Plant Biotechnology Reports, 11, 193–207.

    Article  Google Scholar 

  13. Beerli, R. R., & Barbas, C. F. (2002). Engineering polydactyl zinc-finger transcription factors. Nature Biotechnology, 20, 135–141.

    Article  CAS  PubMed  Google Scholar 

  14. Zhang, F., Cong, L., Lodato, S., Kosuri, S., Church, G. M., & Arlotta, P. (2011). Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription. Nature Biotechnology, 29, 149.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Mao, Y., Zhang, H., Xu, N., Zhang, B., Gou, F., & Zhu, J. K. (2013). Application of the CRISPR–Cas system for efficient genome engineering in plants. Molecular Plant, 6, 2008–2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Li, J. F., Norville, J. E., Aach, J., McCormack, M., Zhang, D., Bush, J., Church, G. M., & Sheen, J. (2013). Multiplex and homologous recombination–mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nature Biotechnology, 31, 688–691.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A., & Charpentier, E. (2012). A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science, 337, 816–821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mali, P., Yang, L., Esvelt, K. M., Aach, J., Guell, M., DiCarlo, J. E., Norville, J. E., & Church, G. M. (2013). RNA-guided human genome engineering via Cas9. Science, 339, 823–826.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Schaeffer, S. M., & Nakata, P. A. (2016). The expanding footprint of CRISPR/Cas9 in the plant sciences. Plant Cell Reports, 35, 1451–1468.

    Article  CAS  PubMed  Google Scholar 

  20. Zhang, Y., Malzahn, A. A., Sretenovic, S., & Qi, Y. (2019). The emerging and uncultivated potential of CRISPR technology in plant science. Nature Plants, 5, 778–794.

    Article  PubMed  Google Scholar 

  21. Gao, C. (2018). The future of CRISPR technologies in agriculture. Nature Reviews Molecular Cell Biology, 19, 275–276.

    Article  CAS  PubMed  Google Scholar 

  22. Fauser, F., Schiml, S., & Puchta, H. (2014). Both CRISPR/Cas-based nucleases and nickases can be used efficiently for genome engineering in Arabidopsis thaliana. The Plant Journal, 79, 348–359.

    Article  CAS  PubMed  Google Scholar 

  23. Shan, Q., Wang, Y., Li, J., Zhang, Y., Chen, K., Liang, Z., Zhang, K., Liu, J., Xi, J. J., & Qiu, J. L. (2013). Targeted genome modification of crop plants using a CRISPR-Cas system. Nature Biotechnology, 31, 686–688.

    Article  CAS  PubMed  Google Scholar 

  24. Wang, Y., Cheng, X., Shan, Q., Zhang, Y., Liu, J., Gao, C., & Qiu, J. L. (2014). Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nature Biotechnology, 32, 947.

    Article  CAS  PubMed  Google Scholar 

  25. Wang, S., Zhang, S., Wang, W., Xiong, X., Meng, F., & Cui, X. (2015). Efficient targeted mutagenesis in potato by the CRISPR/Cas9 system. Plant Cell Reports, 34, 1473–1476.

    Article  CAS  PubMed  Google Scholar 

  26. Shi, J., Gao, H., Wang, H., Lafitte, H. R., Archibald, R. L., Yang, M., Hakimi, S. M., Mo, H., & Habben, J. E. (2017). ARGOS 8 variants generated by CRISPR-Cas9 improve maize grain yield under field drought stress conditions. Plant Biotechnology Journal, 15, 207–216.

    Article  CAS  PubMed  Google Scholar 

  27. Svitashev, S., Young, J. K., Schwartz, C., Gao, H., Falco, S. C., & Cigan, A. M. (2015). Targeted mutagenesis, precise gene editing, and site-specific gene insertion in maize using Cas9 and guide RNA. Plant Physiology, 169, 931–945.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Brooks, C., Nekrasov, V., Lippman, Z. B., & Van Eck, J. (2014). Efficient gene editing in tomato in the first generation using the clustered regularly interspaced short palindromic repeats/CRISPR-associated9 system. Plant Physiology, 166, 1292–1297.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Jacobs, T. B., LaFayette, P. R., Schmitz, R. J., & Parrott, W. A. (2015). Targeted genome modifications in soybean with CRISPR/Cas9. BMC Biotechnology, 15, 16.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Jiang, W. Z., Henry, I. M., Lynagh, P. G., Comai, L., Cahoon, E. B., & Weeks, D. P. (2017). Significant enhancement of fatty acid composition in seeds of the allohexaploid, Camelina sativa, using CRISPR/Cas9 gene editing. Plant Biotechnology Journal, 15, 648–657.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jiang, W., Zhou, H., Bi, H., Fromm, M., Yang, B., & Weeks, D. P. (2013). Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Research, 41, e188–e188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Feng, Z., Zhang, B., Ding, W., Liu, X., Yang, D. L., Wei, P., Cao, F., Zhu, S., Zhang, F., Mao, Y., & Zhu, J. K. (2013). Efficient genome editing in plants using a CRISPR/Cas system. Cell Research, 23, 1229–1232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Xing, H. L., Dong, L., Wang, Z. P., Zhang, H. Y., Han, C. Y., Liu, B., Wang, X. C., & Chen, Q. J. (2014). A CRISPR/Cas9 toolkit for multiplex genome editing in plants. BMC Plant Biology, 14, 327.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Hyun, Y., Kim, J., Cho, S. W., Choi, Y., Kim, J. S., & Coupland, G. (2015). Site-directed mutagenesis in Arabidopsis thaliana using dividing tissue-targeted RGEN of the CRISPR/Cas system to generate heritable null alleles. Planta, 241, 271–284.

    Article  CAS  PubMed  Google Scholar 

  35. Steinert, J., Schiml, S., Fauser, F., & Puchta, H. (2015). Highly efficient heritable plant genome engineering using Cas9 orthologues from Streptococcus thermophilus and Staphylococcus aureus. The Plant Journal, 84, 1295–1305.

    Article  CAS  PubMed  Google Scholar 

  36. Ma, X., Zhang, Q., Zhu, Q., Liu, W., Chen, Y., Qiu, R., Wang, B., Yang, Z., Li, H., & Lin, Y. (2015). A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Molecular Plant, 8, 1274–1284.

    Article  CAS  PubMed  Google Scholar 

  37. Woo, J. W., Kim, J., Kwon, S. I., Corvalán, C., Cho, S. W., Kim, H., Kim, S. G., Kim, S. T., Choe, S., & Kim, J. S. (2015). DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins. Nature Biotechnology, 33, 1162–1164.

    Article  CAS  PubMed  Google Scholar 

  38. Johnson, R. A., Gurevich, V., Filler, S., Samach, A., & Levy, A. A. (2015). Comparative assessments of CRISPR-Cas nucleases’ cleavage efficiency in planta. Plant Molecular Biology, 87, 143–156.

    Article  CAS  PubMed  Google Scholar 

  39. Pyott, D. E., Sheehan, E., & Molnar, A. (2016). Engineering of CRISPR/Cas9-mediated potyvirus resistance in transgene-free Arabidopsis plants. Molecular Plant Pathology, 17, 1276–1288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yang, Y., Zhu, K., Li, H., Han, S., Meng, Q., Khan, S. U., Fan, C., Xie, K., & Zhou, Y. (2018). Precise editing of CLAVATA genes in Brassica napus L. regulates multilocular silique development. Plant Biotechnology Journal, 16, 1322–1335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Braatz, J., Harloff, H. J., Mascher, M., Stein, N., Himmelbach, A., & Jung, C. (2017). CRISPR-Cas9 targeted mutagenesis leads to simultaneous modification of different homoeologous gene copies in polyploid oilseed rape (Brassica napus). Plant Physiology, 174, 935–942.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kaur, N., Alok, A., Kaur, N., Pandey, P., Awasthi, P., & Tiwari, S. (2018). CRISPR/Cas9-mediated efficient editing in phytoene desaturase (PDS) demonstrates precise manipulation in banana cv. Rasthali genome. Functional & Integrative Genomics, 18, 89–99.

    Article  CAS  Google Scholar 

  43. Chandrasekaran, J., Brumin, M., Wolf, D., Leibman, D., Klap, C., Pearlsman, M., Sherman, A., Arazi, T., & Gal-On, A. (2016). Development of broad virus resistance in non-transgenic cucumber using CRISPR/Cas9 technology. Molecular Plant Pathology, 17, 1140–1153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hummel, A. W., Chauhan, R. D., Cermak, T., Mutka, A. M., Vijayaraghavan, A., Boyher, A., Starker, C. G., Bart, R., Voytas, D. F., & Taylor, N. J. (2018). Allele exchange at the EPSPS locus confers glyphosate tolerance in cassava. Plant Biotechnology Journal, 16, 1275–1282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gomez, M. A., Lin, Z. D., Moll, T., Chauhan, R. D., Hayden, L., Renninger, K., & Bart, R. S. (2019). Simultaneous CRISPR/Cas9-mediated editing of cassava eIF 4E isoforms nCBP-1 and nCBP-2 reduces cassava brown streak disease symptom severity and incidence. Plant Biotechnology Journal, 17, 421–434.

    Article  CAS  PubMed  Google Scholar 

  46. Sauer, N. J., Narváez-Vásquez, J., Mozoruk, J., Miller, R. B., Warburg, Z. J., Woodward, M. J., & Gocal, G. F. (2016). Oligonucleotide-mediated genome editing provides precision and function to engineered nucleases and antibiotics in plants. Plant Physiology, 170, 1917–1928.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Jia, H., Orbovic, V., Jones, J. B., & Wang, N. (2016). Modification of the PthA4 effector binding elements in Type I Cs LOB 1 promoter using Cas9/sg RNA to produce transgenic Duncan grapefruit alleviating XccΔpthA4: DCs LOB 1.3 infection. Plant Biotechnology Journal, 14, 1291–1301.

    Article  CAS  PubMed  Google Scholar 

  48. Jacobs, T. B., LaFayette, P. R., Schmitz, R. J., & Parrott, W. A. (2015). Targeted genome modifications in soybean with CRISPR/Cas9. BMC Biotechnology, 15, 1–10.

    Article  CAS  Google Scholar 

  49. Li, Z., Liu, Z. B., Xing, A., Moon, B. P., Koellhoffer, J. P., Huang, L., Ward, R. T., Clifton, E., Falco, S. C., & Cigan, A. M. (2015). Cas9-guide RNA directed genome editing in soybean. Plant Physiology, 169, 960–970.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Nekrasov, V., Staskawicz, B., Weigel, D., Jones, J. D., & Kamoun, S. (2013). Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nature Biotechnol., 31, 691–693.

    Article  CAS  Google Scholar 

  51. Belhaj, K., Chaparro-Garcia, A., Kamoun, S., & Nekrasov, V. (2013). Plant genome editing made easy: Targeted mutagenesis in model and crop plants using the CRISPR/Cas system. Plant Methods, 9, 39.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Peng, A., Chen, S., Lei, T., Xu, L., He, Y., Wu, L., Yao, L., & Zou, X. (2017). Engineering canker-resistant plants through CRISPR/Cas9-targeted editing of the susceptibility gene Cs LOB 1 promoter in citrus. Plant Biotechnology Journal, 15, 1509–1519.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Andersson, M., Turesson, H., Nicolia, A., Fält, A. S., Samuelsson, M., & Hofvander, P. (2017). Efficient targeted multiallelic mutagenesis in tetraploid potato (Solanum tuberosum) by transient CRISPR-Cas9 expression in protoplasts. Plant Cell Reports, 36, 117–128.

    Article  CAS  PubMed  Google Scholar 

  54. Butler, N. M., Baltes, N. J., Voytas, D. F., & Douches, D. S. (2016). Gemini virus-mediated genome editing in potato (Solanum tuberosum L.) using sequence-specific nucleases. Frontiers in Plant Science, 7, 1045.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Nekrasov, V., Wang, C., Win, J., Lanz, C., Weigel, D., & Kamoun, S. (2017). Rapid generation of a transgene-free powdery mildew resistant tomato by genome deletion. Science and Reports, 7, 1–6.

    CAS  Google Scholar 

  56. Soyk, S., Müller, N. A., Park, S. J., Schmalenbach, I., Jiang, K., Hayama, R., Zhang, L., Eck, J. V., Jiménez-Gómez, J. M., & Lippman, Z. B. (2017). Variation in the flowering gene SELF PRUNING 5G promotes day-neutrality and early yield in tomato. Nature Genetics, 49, 162–168.

    Article  CAS  PubMed  Google Scholar 

  57. Yu, Q. H., Wang, B., Li, N., Tang, Y., Yang, S., Yang, T., Xu, J., Guo, C., Yan, P., Wang, Q., & Asmutola, P. (2017). CRISPR/Cas9-induced targeted mutagenesis and gene replacement to generate long-shelf life tomato lines. Science and Reports, 7, 1–9.

    Google Scholar 

  58. Ortigosa, A., Gimenez-Ibanez, S., Leonhardt, N., & Solano, R. (2019). Design of a bacterial speck resistant tomato by CRISPR/Cas9-mediated editing of Sl JAZ 2. Plant Biotechnology Journal, 17, 665–673.

    Article  CAS  PubMed  Google Scholar 

  59. Liu, G., Li, J., & Godwin, I. D. (2019). Genome editing by CRISPR/Cas9 in sorghum through biolistic bombardment. In Z. Y. Zhao & J. Dahlberg (Eds.), Sorghum (pp. 169–183). Humana Press.

    Chapter  Google Scholar 

  60. Xu, R. F., Li, H., Qin, R. Y., Li, J., Qiu, C. H., Yang, Y. C., Ma, H., Li, L., Wei, P. C., & Yang, J. B. (2015). Generation of inheritable and “transgene clean” targeted genome-modified rice in later generations using the CRISPR/Cas9 system. Science and Reports, 5, 1–10.

    Google Scholar 

  61. Butt, H., Eid, A., Ali, Z., Atia, M. A., Mokhtar, M. M., Hassan, N., Lee, C. M., Bao, G., & Mahfouz, M. M. (2017). Efficient CRISPR/Cas9-mediated genome editing using a chimeric single-guide RNA molecule. Frontiers in Plant Science, 8, 1441.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Xu, R., Qin, R., Li, H., Li, D., Li, L., Wei, P., & Yang, J. (2017). Generation of targeted mutant rice using a CRISPR-Cpf1 system. Plant Biotechnology Journal, 15, 713–717.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Xu, R., Li, H., Qin, R., Wang, L., Li, L., Wei, P., & Yang, J. (2014). Gene targeting using the Agrobacterium tumefaciens-mediated CRISPR-Cas system in rice. Rice, 7, 1–4.

    Article  CAS  Google Scholar 

  64. Endo, A., Masafumi, M., Kaya, H., & Toki, S. (2016). Efficient targeted mutagenesis of rice and tobacco genomes using Cpf1 from Francisella novicida. Science and Reports, 6, 1–9.

    Google Scholar 

  65. Endo, M., Mikami, M., & Toki, S. (2016). Biallelic gene targeting in rice. Plant Physiology, 170, 667–677.

    Article  CAS  PubMed  Google Scholar 

  66. Zhou, J., Peng, Z., Long, J., Sosso, D., Liu, B. O., Eom, J. S., Huang, S., Liu, S., Cruz, C. V., Frommer, W. B., White, F. F., & Yang, B. (2015). Gene targeting by the TAL effector PthXo2 reveals cryptic resistance gene for bacterial blight of rice. The Plant Journal, 82, 632–643.

    Article  CAS  PubMed  Google Scholar 

  67. Li, J., Meng, X., Zong, Y., Chen, K., Zhang, H., Liu, J., Li, J., & Gao, C. (2016). Gene replacements and insertions in rice by intron targeting using CRISPR–Cas9. Nature Plants, 2, 1–6.

    Article  Google Scholar 

  68. Sun, Y., Zhang, X., Wu, C., He, Y., Ma, Y., Hou, H., Guo, X., Du, W., Zhao, Y., & Xia, L. (2016). Engineering herbicide-resistant rice plants through CRISPR/Cas9-mediated homologous recombination of acetolactate synthase. Molecular Plant, 9, 628–631.

    Article  CAS  PubMed  Google Scholar 

  69. Wang, F., Wang, C., Liu, P., Lei, C., Hao, W., Gao, Y., Liu, Y. G., & Zhao, K. (2016). Enhanced rice blast resistance by CRISPR/Cas9-targeted mutagenesis of the ERF transcription factor gene OsERF922. PLoS ONE, 11, e0154027.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Sun, Y., Jiao, G., Liu, Z., Zhang, X., Li, J., Guo, X., Du, W., Du, J., Francis, F., Zhao, Y., & Xia, L. (2017). Generation of high-amylose rice through CRISPR/Cas9-mediated targeted mutagenesis of starch branching enzymes. Frontiers in Plant Science, 8, 298.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Miao, J., Guo, D., Zhang, J., Huang, Q., Qin, G., Zhang, X., Wan, J., Gu, H., & Qu, L. J. (2013). Targeted mutagenesis in rice using CRISPR-Cas system. Cell Research, 23, 1233–1236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Li, M., Li, X., Zhou, Z., Wu, P., Fang, M., Pan, X., Lin, Q., Luo, W., Wu, G., & Li, H. (2016). Reassessment of the four yield-related genes Gn1a, DEP1, GS3, and IPA1 in rice using a CRISPR/Cas9 system. Frontiers in Plant Science, 7, 377.

    PubMed  PubMed Central  Google Scholar 

  73. Yao, L., Zhang, Y., Liu, C., Liu, Y., Wang, Y., Liang, D., Liu, J., Sahoo, G., & Kelliher, T. (2018). OsMATL mutation induces haploid seed formation in indica rice. Nature Plants, 4, 530–533.

    Article  CAS  PubMed  Google Scholar 

  74. Endo, M., Mikami, M., & Toki, S. (2015). Multigene knockout utilizing off-target mutations of the CRISPR/Cas9 system in rice. Plant and Cell Physiology, 56, 41–47.

    Article  CAS  PubMed  Google Scholar 

  75. Sánchez-León, S., Gil-Humanes, J., Ozuna, C. V., Giménez, M. J., Sousa, C., Voytas, D. F., & Barro, F. (2018). Low-gluten, nontransgenic wheat engineered with CRISPR/Cas9. Plant Biotechnology Journal, 16, 902–910.

    Article  PubMed  Google Scholar 

  76. Zhang, Y., Liang, Z., Zong, Y., Wang, Y., Liu, J., Chen, K., Qiu, J. L., & Gao, C. (2016). Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA. Nature Communications, 7, 1–8.

    Google Scholar 

  77. Zhang, Y., Bai, Y., Wu, G., Zou, S., Chen, Y., Gao, C., & Tang, D. (2017). Simultaneous modification of three homoeologs of Ta EDR 1 by genome editing enhances powdery mildew resistance in wheat. The Plant Journal, 91, 714–724.

    Article  CAS  PubMed  Google Scholar 

  78. Zhang, Y., Li, D., Zhang, D., Zhao, X., Cao, X., Dong, L., Liu, J., Chen, K., Zhang, H., Gao, C., & Wang, D. (2018). Analysis of the functions of Ta GW 2 homoeologs in wheat grain weight and protein content traits. The Plant Journal, 94, 857–866.

    Article  CAS  PubMed  Google Scholar 

  79. Liang, Z., Zhang, K., Chen, K., & Gao, C. (2014). Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system. Journal of Genetics and Genomics, 41, 63–68.

    Article  CAS  PubMed  Google Scholar 

  80. Feng, C., Yuan, J., Wang, R., Liu, Y., Birchler, J. A., & Han, F. (2016). Efficient targeted genome modification in maize using CRISPR/Cas9 system. Journal of Genetics and Genomics, 43, 37–43.

    Article  PubMed  Google Scholar 

  81. Ren, C., Liu, X., Zhang, Z., Wang, Y., Duan, W., Li, S., & Liang, Z. (2016). CRISPR/Cas9-mediated efficient targeted mutagenesis in Chardonnay (Vitis vinifera L.). Science and Reports, 6, 1–9.

    CAS  Google Scholar 

  82. Malnoy, M., Viola, R., Jung, M. H., Koo, O. J., Kim, S., Kim, J. S., Velasco, R., & Nagamangala Kanchiswamy, C. (2016). DNA-free genetically edited grapevine and apple protoplast using CRISPR/Cas9 ribonucleoproteins. Frontiers in Plant Science, 7, 1904.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Wang, X., Tu, M., Wang, D., Liu, J., Li, Y., Li, Z., Wang, Y., & Wang, X. (2018). CRISPR/Cas9-mediated efficient targeted mutagenesis in grape in the first generation. Plant Biotechnology Journal, 16, 844–855.

    Article  CAS  PubMed  Google Scholar 

  84. Li, C., Unver, T., & Zhang, B. (2017). A high-efficiency CRISPR/Cas9 system for targeted mutagenesis in Cotton (Gossypium hirsutum L.). Science and Reports, 7, 1–10.

    Google Scholar 

  85. Iqbal, Z., Sattar, M. N., & Shafiq, M. (2016). CRISPR/Cas9: A tool to circumscribe cotton leaf curl disease. Frontiers in Plant Science, 7, 475.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Fister, A. S., Landherr, L., Maximova, S. N., & Guiltinan, M. J. (2018). Transient expression of CRISPR/Cas9 machinery targeting TcNPR3 enhances defense response in Theobroma cacao. Frontiers in Plant Science, 9, 268.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Nishitani, C., Hirai, N., Komori, S., Wada, M., Okada, K., Osakabe, K., Yamamoto, T., & Osakabe, Y. (2016). Efficient genome editing in apple using a CRISPR/Cas9 system. Science and Reports, 6, 1–8.

    Google Scholar 

  88. Jasin, M., de Villiers, J., Weber, F., & Schaffner, W. (1985). High frequency of homologous recombination in mammalian cells between endogenous and introduced SV40 genomes. Cell, 43, 695–703.

    Article  CAS  PubMed  Google Scholar 

  89. Orr-Weaver, T. L., Szostak, J. W., & Rothstein, R. J. (1981). Yeast transformation: A model system for the study of recombination. Proceedings of the National Academy of Sciences of the United States of America, 78, 6354–6358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Thomas, K. R., Folger, K. R., & Capecchi, M. R. (1986). High frequency targeting of genes to specific sites in the mammalian genome. Cell, 44, 419–428.

    Article  CAS  PubMed  Google Scholar 

  91. De Lozanne, A., & Spudich, J. A. (1987). Disruption of the Dictyostelium myosin heavy chain gene by homologous recombination. Science, 236, 1086–1091.

    Article  PubMed  Google Scholar 

  92. Capecchi, M. R. (1989). Altering the genome by homologous recombination. Science, 244, 1288–1292.

    Article  CAS  PubMed  Google Scholar 

  93. Doetschman, T., Maeda, N., & Smithies, O. (1988). Targeted mutation of the Hprt gene in mouse embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 85, 8583–8587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Baur, M., Potrykus, I., & Paszkowski, J. (1990). Intermolecular homologous recombination in plants. Molecular and Cellular Biology, 10, 492–500.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Lonsdale, D., Brears, T., Hodge, T., Melville, S. E., & Rottmann, W. (1988). The plant mitochondrial genome: Homologous recombination as a mechanism for generating heterogeneity. Philosophical Transactions of the Royal Society B, Biological Sciences, 319, 149–163.

    CAS  Google Scholar 

  96. Eid, A., & Mahfouz, M. M. (2016). Genome editing: The road of CRISPR/Cas9 from bench to clinic. Experimental & Molecular Medicine, 48, e265–e265.

    Article  CAS  Google Scholar 

  97. Rouet, P., Smih, F., & Jasin, M. (1994). Introduction of double-strand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease. Molecular and Cellular Biology, 14, 8096–8106.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Komor, A. C., Badran, A. H., & Liu, D. R. (2017). CRISPR-based technologies for the manipulation of eukaryotic genomes. Cell, 168, 20–36.

    Article  CAS  PubMed  Google Scholar 

  99. Fire, A., Xu, S., Montgomery, M. K., Kostas, S. A., Driver, S. E., & Mello, C. C. (1998). Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 391, 806–811.

    Article  CAS  PubMed  Google Scholar 

  100. Dorokhov, Y. L. (2007). Gene silencing in plants. Molecular Biology, 41, 519–530.

    Article  CAS  Google Scholar 

  101. Sledz, C. A., & Williams, B. R. (2005). RNA interference in biology and disease. Blood, 106, 787–794.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Baulcombe, D. (2004). RNA silencing in plants. Nature, 431, 356–363.

    Article  CAS  PubMed  Google Scholar 

  103. Ratcliff, F., Harrison, B. D., & Baulcombe, D. C. (1997). A similarity between viral defense and gene silencing in plants. Science, 276, 1558–1560.

    Article  CAS  PubMed  Google Scholar 

  104. Langner, T., Kamoun, S., & Belhaj, K. (2018). CRISPR crops: Plant genome editing toward disease resistance. Annual Review of Phytopathology, 56, 479–512.

    Article  CAS  PubMed  Google Scholar 

  105. Shrawat, A. K., & Lörz, H. (2006). Agrobacterium-mediated transformation of cereals: A promising approach crossing barriers. Plant Biotechnology Journal, 4, 575–603.

    Article  CAS  PubMed  Google Scholar 

  106. Gaj, T., Gersbach, C. A., & Barbas, C. F., III. (2013). ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends in Biotechnology, 31, 397–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Dunn, D. A., & Pinkert, C. A. (2014). Gene editing. Transgenic animal technology (pp. 229–248). Elsevier.

    Chapter  Google Scholar 

  108. Chevalier, B., Monnat, R. J., & Stoddard, B. L. (2005). The LAGLIDADG homing endonuclease family. In M. Belfort, D. W. Wood, B. L. Stoddard, & V. Derbyshire (Eds.), Homing endonucleases and inteins. Nucleic acids and molecular biology (pp. 33–47). Springer.

    Chapter  Google Scholar 

  109. Hafez, M., & Hausner, G. (2012). Homing endonucleases: DNA scissors on a mission. Genome, 55, 553–569.

    Article  CAS  PubMed  Google Scholar 

  110. Bos, J., Heyting, C., Borst, P., Arnberg, A., & Van Bruggen, E. (1978). An insert in the single gene for the large ribosomal RNA in yeast mitochondrial DNA. Nature, 275, 336–338.

    Article  CAS  PubMed  Google Scholar 

  111. Faye, G., Dennebouy, N., Kujawa, C., & Jacq, C. (1979). Inserted sequence in the mitochondrial 23S ribosomal RNA gene of the yeast Saccharomyces cerevisiae. Molecular and General Genetics, 168, 101–109.

    Article  CAS  PubMed  Google Scholar 

  112. Stoddard, B. L. (2014). Homing endonucleases from mobile group I introns: Discovery to genome engineering. Mobile DNA, 5, 7.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Jacquier, A., & Dujon, B. (1985). An intron-encoded protein is active in a gene conversion process that spreads an intron into a mitochondrial gene. Cell, 41, 383–394.

    Article  CAS  PubMed  Google Scholar 

  114. Macreadie, I. G., Scott, R. M., Zinn, A. R., & Butow, R. A. (1985). Transposition of an intron in yeast mitochondria requires a protein encoded by that intron. Cell, 41, 395–402.

    Article  CAS  PubMed  Google Scholar 

  115. Zinn, A. R., & Butow, R. A. (1985). Nonreciprocal exchange between alleles of the yeast mitochondrial 21S rRNA gene: Kinetics and the involvement of a double-strand break. Cell, 40, 887–895.

    Article  CAS  PubMed  Google Scholar 

  116. Baltes, N. J., & Voytas, D. F. (2015). Enabling plant synthetic biology through genome engineering. Trends in Biotechnology, 33, 120–131.

    Article  CAS  PubMed  Google Scholar 

  117. Barzel, A., Privman, E., Peeri, M., Naor, A., Shachar, E., Burstein, D., Lazary, R., Gophna, U., Pupko, T., & Kupiec, M. (2011). Native homing endonucleases can target conserved genes in humans and in animal models. Nucleic Acids Research, 39, 6646–6659.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Djukanovic, V., Smith, J., Lowe, K., Yang, M., Gao, H., Jones, S., Nicholson, M. G., West, A., Lape, J., & Bidney, D. (2013). Male-sterile maize plants produced by targeted mutagenesis of the cytochrome P 450-like gene (MS 26) using a re-designed I-C reI homing endonuclease. The Plant Journal, 76, 888–899.

    Article  CAS  PubMed  Google Scholar 

  119. Antunes, M. S., Smith, J. J., Jantz, D., & Medford, J. I. (2012). Targeted DNA excision in Arabidopsis by a re-engineered homing endonuclease. BMC Biotechnology, 12, 86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Miller, J., McLachlan, A., & Klug, A. (1985). Repetitive zinc-binding domains in the protein transcription factor IIIA from Xenopus oocytes. EMBO Journal, 4, 1609–1614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Kim, Y. G., Cha, J., & Chandrasegaran, S. (1996). Hybrid restriction enzymes: Zinc finger fusions to Fok I cleavage domain. Proceedings of the National Academy of Sciences of the United States of America, 93, 1156–1160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Bibikova, M., Carroll, D., Segal, D. J., Trautman, J. K., Smith, J., Kim, Y. G., & Chandrasegaran, S. (2001). Stimulation of homologous recombination through targeted cleavage by chimeric nucleases. Molecular and Cellular Biology, 21, 289–297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Bibikova, M., Golic, M., Golic, K. G., & Carroll, D. (2002). Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. Genetics, 161, 1169–1175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Carbery, I. D., Ji, D., Harrington, A., Brown, V., Weinstein, E. J., Liaw, L., & Cui, X. (2010). Targeted genome modification in mice using zinc-finger nucleases. Genetics, 186, 451–459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Meng, X., Noyes, M. B., Zhu, L. J., Lawson, N. D., & Wolfe, S. A. (2008). Targeted gene inactivation in zebrafish using engineered zinc-finger nucleases. Nature Biotechnology, 26, 695–701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Shukla, V. K., Doyon, Y., Miller, J. C., DeKelver, R. C., Moehle, E. A., Worden, S. E., Mitchell, J. C., Arnold, N. L., Gopalan, S., & Meng, X. (2009). Precise genome modification in the crop species Zea mays using zinc-finger nucleases. Nature, 459, 437–441.

    Article  CAS  PubMed  Google Scholar 

  127. Townsend, J. A., Wright, D. A., Winfrey, R. J., Fu, F., Maeder, M. L., Joung, J. K., & Voytas, D. F. (2009). High-frequency modification of plant genes using engineered zinc-finger nucleases. Nature, 459, 442–445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Zhang, F., Maeder, M. L., Unger-Wallace, E., Hoshaw, J. P., Reyon, D., Christian, M., Li, X., Pierick, C. J., Dobbs, D., & Peterson, T. (2010). High frequency targeted mutagenesis in Arabidopsis thaliana using zinc finger nucleases. Proceedings of the National Academy of Sciences of the United States of America, 107, 12028–12033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Chandrasegaran, S., & Carroll, D. (2016). Origins of programmable nucleases for genome engineering. Journal of Molecular Biology, 428, 963–989.

    Article  CAS  PubMed  Google Scholar 

  130. Chen, K., Wang, Y., Zhang, R., Zhang, H., & Gao, C. (2019). CRISPR/Cas genome editing and precision plant breeding in agriculture. Annual Review of Plant Biology, 70, 667–697.

    Article  CAS  PubMed  Google Scholar 

  131. Händel, E. M., Alwin, S., & Cathomen, T. (2009). Expanding or restricting the target site repertoire of zinc-finger nucleases: The inter-domain linker as a major determinant of target site selectivity. Molecular Therapy, 17, 104–111.

    Article  PubMed  Google Scholar 

  132. Pabo, C. O., Peisach, E., & Grant, R. A. (2001). Design and selection of novel Cys2His2 zinc finger proteins. Annual Review of Biochemistry, 70, 313–340.

    Article  CAS  PubMed  Google Scholar 

  133. Nakajima, K., Nakajima, T., Takase, M., & Yaoita, Y. (2012). Generation of albino Xenopus tropicalis using zinc-finger nucleases. Development, Growth & Differentiation, 54, 777–784.

    Article  CAS  Google Scholar 

  134. Doyon, Y., McCammon, J. M., Miller, J. C., Faraji, F., Ngo, C., Katibah, G. E., Amora, R., Hocking, T. D., Zhang, L., & Rebar, E. J. (2008). Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases. Nature Biotechnol., 26, 702–708.

    Article  CAS  Google Scholar 

  135. Osakabe, K., Osakabe, Y., & Toki, S. (2010). Site-directed mutagenesis in Arabidopsis using custom-designed zinc finger nucleases. Proceedings of the National Academy of Sciences of the United States of America, 107, 12034–12039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Hsu, P. D., Lander, E. S., & Zhang, F. (2014). Development and applications of CRISPR-Cas9 for genome engineering. Cell, 157, 1262–1278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. El-Sayed, A. S., Abdel-Ghany, S. E., & Ali, G. S. (2017). Genome editing approaches: Manipulating of lovastatin and taxol synthesis of filamentous fungi by CRISPR/Cas9 system. Applied Microbiology and Biotechnology, 101, 3953–4397.

    Article  CAS  PubMed  Google Scholar 

  138. Malzahn, A., Lowder, L., & Qi, Y. (2017). Plant genome editing with TALEN and CRISPR. Cell & Bioscience, 7, 21.

    Article  Google Scholar 

  139. Boch, J., Scholze, H., Schornack, S., Landgraf, A., Hahn, S., Kay, S., Lahaye, T., Nickstadt, A., & Bonas, U. (2009). Breaking the code of DNA binding specificity of TAL-type III effectors. Science, 326, 1509–1512.

    Article  CAS  PubMed  Google Scholar 

  140. Moscou, M. J., & Bogdanove, A. J. (2009). A simple cipher governs DNA recognition by TAL effectors. Science, 326, 1501–1501.

    Article  CAS  PubMed  Google Scholar 

  141. Schandry, N., Jacobs, J. M., Szurek, B., & Perez-Quintero, A. L. (2018). A cautionary TALE: How plant breeding may have favoured expanded TALE repertoires in Xanthomonas. Molecular Plant Pathology, 19, 1297.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Miller, J. C., Tan, S., Qiao, G., Barlow, K. A., Wang, J., Xia, D. F., Meng, X., Paschon, D. E., Leung, E., & Hinkley, S. J. (2011). A TALE nuclease architecture for efficient genome editing. Nature Biotechnology, 29, 143.

    Article  CAS  PubMed  Google Scholar 

  143. Song, J., Zhong, J., Guo, X., Chen, Y., Zou, Q., Huang, J., Li, X., Zhang, Q., Jiang, Z., & Tang, C. (2013). Generation of RAG 1-and 2-deficient rabbits by embryo microinjection of TALENs. Cell Research, 23, 1059–1062.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Lei, Y., Guo, X., Liu, Y., Cao, Y., Deng, Y., Chen, X., Cheng, C. H., Dawid, I. B., Chen, Y., & Zhao, H. (2012). Efficient targeted gene disruption in Xenopus embryos using engineered transcription activator-like effector nucleases (TALENs). Proceedings of the National Academy of Sciences of the United States of America, 109, 17484–17489.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Carlson, D. F., Tan, W., Lillico, S. G., Stverakova, D., Proudfoot, C., Christian, M., Voytas, D. F., Long, C. R., Whitelaw, C. B. A., & Fahrenkrug, S. C. (2012). Efficient TALEN-mediated gene knockout in livestock. Proceedings of the National Academy of Sciences of the United States of America, 109, 17382–17387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Wefers, B., Panda, S. K., Ortiz, O., Brandl, C., Hensler, S., Hansen, J., Wurst, W., & Kühn, R. (2013). Generation of targeted mouse mutants by embryo microinjection of TALEN mRNA. Nature Protocols, 8, 2355.

    Article  CAS  PubMed  Google Scholar 

  147. Dahlem, T. J., Hoshijima, K., Jurynec, M. J., Gunther, D., Starker, C. G., Locke, A. S., Weis, A. M., Voytas, D. F., & Grunwald, D. J. (2012). Simple methods for generating and detecting locus-specific mutations induced with TALENs in the zebrafish genome. PLoS Genetics, 8(8), e1002861.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Ansai, S., Sakuma, T., Yamamoto, T., Ariga, H., Uemura, N., Takahashi, R., & Kinoshita, M. (2013). Efficient targeted mutagenesis in medaka using custom-designed transcription activator-like effector nucleases. Genetics, 193, 739–749.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Christian, M., Qi, Y., Zhang, Y., & Voytas, D. F. (2013). Targeted mutagenesis of Arabidopsis thaliana using engineered TAL effector nucleases. G3 Genes|Genomes|Genetics, 3, 1697–1705.

    Article  PubMed  PubMed Central  Google Scholar 

  150. Li, T., Liu, B., Spalding, M. H., Weeks, D. P., & Yang, B. (2012). High-efficiency TALEN-based gene editing produces disease-resistant rice. Nature Biotechnology, 30, 390.

    Article  CAS  PubMed  Google Scholar 

  151. Shan, Q., Wang, Y., Chen, K., Liang, Z., Li, J., Zhang, Y., Zhang, K., Liu, J., Voytas, D. F., & Zheng, X. (2013). Rapid and efficient gene modification in rice and Brachypodium using TALENs. Molecular Plant, 6, 1365–1368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Clasen, B. M., Stoddard, T. J., Luo, S., Demorest, Z. L., Li, J., Cedrone, F., Tibebu, R., Davison, S., Ray, E. E., & Daulhac, A. (2016). Improving cold storage and processing traits in potato through targeted gene knockout. Plant Biotechnology Journal, 14, 169–176.

    Article  CAS  PubMed  Google Scholar 

  153. Char, S. N., Unger-Wallace, E., Frame, B., Briggs, S. A., Main, M., Spalding, M. H., Vollbrecht, E., Wang, K., & Yang, B. (2015). Heritable site-specific mutagenesis using TALEN s in maize. Plant Biotechnology Journal, 13, 1002–1010.

    Article  CAS  PubMed  Google Scholar 

  154. Li, T., Liu, B., Chen, C. Y., & Yang, B. (2016). TALEN-mediated homologous recombination produces site-directed DNA base change and herbicide-resistant rice. Journal of Genetics and Genomics, 43, 297–305.

    Article  PubMed  Google Scholar 

  155. Ma, L., Zhu, F., Li, Z., Zhang, J., Li, X., Dong, J., & Wang, T. (2015). TALEN-based mutagenesis of lipoxygenase LOX3 enhances the storage tolerance of rice (Oryza sativa) seeds. PLoS ONE, 10(12), e0143877.

    Article  PubMed  PubMed Central  Google Scholar 

  156. Shan, Q., Zhang, Y., Chen, K., Zhang, K., & Gao, C. (2015). Creation of fragrant rice by targeted knockout of the Os BADH 2 gene using TALEN technology. Plant Biotechnology Journal, 13, 791–800.

    Article  CAS  PubMed  Google Scholar 

  157. Haun, W., Coffman, A., Clasen, B. M., Demorest, Z. L., Lowy, A., Ray, E., Retterath, A., Stoddard, T., Juillerat, A., & Cedrone, F. (2014). Improved soybean oil quality by targeted mutagenesis of the fatty acid desaturase 2 gene family. Plant Biotechnology Journal, 12, 934–940.

    Article  CAS  PubMed  Google Scholar 

  158. Arora, L., & Narula, A. (2017). Gene editing and crop improvement using CRISPR-Cas9 system. Frontiers in Plant Science, 8, 1932.

    Article  PubMed  PubMed Central  Google Scholar 

  159. Ishino, Y., Shinagawa, H., Makino, K., Amemura, M., & Nakata, A. (1987). Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. Journal of Bacteriology, 169, 5429–5433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Mojica, F. J., García-Martínez, J., & Soria, E. (2005). Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. Journal of Molecular Evolution, 60, 174–182.

    Article  CAS  PubMed  Google Scholar 

  161. Gasiunas, G., Barrangou, R., Horvath, P., & Siksnys, V. (2012). Cas9–crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proceedings of the National Academy of Sciences of the United States of America, 109, E2579–E2586.

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Jinek, M., East, A., Cheng, A., Lin, S., Ma, E., & Doudna, J. (2013). RNA-programmed genome editing in human cells. eLife, 2, e00471.

    Article  PubMed  PubMed Central  Google Scholar 

  163. Richter, C., Chang, J. T., & Fineran, P. C. (2012). Function and regulation of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated (Cas) systems. Viruses, 4, 2291–2311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Marraffini, L. A., & Sontheimer, E. J. (2010). Self versus non-self discrimination during CRISPR RNA-directed immunity. Nature, 463, 568–571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Stern, A., Keren, L., Wurtzel, O., Amitai, G., & Sorek, R. (2010). Self-targeting by CRISPR: Gene regulation or autoimmunity? Trends in Genetics, 26, 335–340.

    Article  CAS  PubMed  Google Scholar 

  166. Karvelis, T., Gasiunas, G., Miksys, A., Barrangou, R., Horvath, P., & Siksnys, V. (2013). crRNA and tracrRNA guide Cas9-mediated DNA interference in Streptococcus thermophilus. RNA Biology, 10, 841–851.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Sander, J. D., & Joung, J. K. (2014). CRISPR-Cas systems for editing, regulating and targeting genomes. Nature Biotechnology, 32, 347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Zhang, J., Zhou, Z., Bai, J., Tao, X., Wang, L., Zhang, H., & Zhu, J. K. (2020). Disruption of MIR396e and MIR396f improves rice yield under nitrogen-deficient conditions. National Science Review, 7, 102–112.

    Article  CAS  PubMed  Google Scholar 

  169. Rodríguez-Leal, D., Lemmon, Z. H., Man, J., Bartlett, M. E., & Lippman, Z. B. (2017). Engineering quantitative trait variation for crop improvement by genome editing. Cell, 171(470–480), e478.

    Google Scholar 

  170. Michno, J. M., Wang, X., Liu, J., Curtin, S. J., Kono, T. J., & Stupar, R. M. (2015). CRISPR/Cas mutagenesis of soybean and Medicago truncatula using a new web-tool and a modified Cas9 enzyme. GM Crops Food, 6, 243–252.

    Article  PubMed  PubMed Central  Google Scholar 

  171. Bhowmik, P., Ellison, E., Polley, B., Bollina, V., Kulkarni, M., Ghanbarnia, K., Song, H., Gao, C., Voytas, D. F., & Kagale, S. (2018). Targeted mutagenesis in wheat microspores using CRISPR/Cas9. Science and Reports, 8, 1–10.

    CAS  Google Scholar 

  172. Zhou, H., He, M., Li, J., Chen, L., Huang, Z., Zheng, S., Zhu, L., Ni, E., Jiang, D., & Zhao, B. (2016). Development of commercial thermo-sensitive genic male sterile rice accelerates hybrid rice breeding using the CRISPR/Cas9-mediated TMS5 editing system. Science and Reports, 6, 1–12.

    Google Scholar 

  173. Hu, J. H., Miller, S. M., Geurts, M. H., Tang, W., Chen, L., Sun, N., Zeina, C. M., Gao, X., Rees, H. A., & Lin, Z. (2018). Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature, 556, 57–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Ni, X. Y., Zhou, Z. D., Huang, J., & Qiao, X. (2020). Targeted gene disruption by CRISPR/xCas9 system in Drosophila melanogaster. Archives of Insect Biochemistry and Physiology, 104, e21662.

    Article  CAS  PubMed  Google Scholar 

  175. Hua, K., Tao, X., Han, P., Wang, R., & Zhu, J. K. (2019). Genome engineering in rice using Cas9 variants that recognize NG PAM sequences. Molecular Plant, 12, 1003–1014.

    Article  CAS  PubMed  Google Scholar 

  176. Ge, Z., Zheng, L., Zhao, Y., Jiang, J., Zhang, E. J., Liu, T., Gu, H., & Qu, L. J. (2019). Engineered xCas9 and SpCas9-NG variants broaden PAM recognition sites to generate mutations in Arabidopsis plants. Plant Biotechnology Journal, 17, 1865–1867.

    Article  PubMed  PubMed Central  Google Scholar 

  177. Komor, A. C., Kim, Y. B., Packer, M. S., Zuris, J. A., & Liu, D. R. (2016). Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature, 533, 420–424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Wang, H., La Russa, M., & Qi, L. S. (2016). CRISPR/Cas9 in genome editing and beyond. Annual Review of Biochemistry, 85, 227–264.

    Article  CAS  PubMed  Google Scholar 

  179. Lin, Q., Zong, Y., Xue, C., Wang, S., Jin, S., Zhu, Z., Wang, Y., Anzalone, A. V., Raguram, A., & Doman, J. L. (2020). Prime genome editing in rice and wheat. Nature Biotechnology, 38, 582–585.

    Article  CAS  PubMed  Google Scholar 

  180. Zong, Y., Wang, Y., Li, C., Zhang, R., Chen, K., Ran, Y., Qiu, J. L., Wang, D., & Gao, C. (2017). Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion. Nature Biotechnology, 35, 48.

    Article  Google Scholar 

  181. Hao, L., Ruiying, Q., Xiaoshuang, L., Shengxiang, L., Rongfang, X., Jianbo, Y., & Pengcheng, W. (2019). CRISPR/Cas9-mediated adenine base editing in rice genome. Rice Science, 26, 125–128.

    Article  Google Scholar 

  182. Qin, L., Li, J., Wang, Q., Xu, Z., Sun, L., Alariqi, M., Manghwar, H., Wang, G., Li, B., & Ding, X. (2020). High-efficient and precise base editing of C·G to T·A in the allotetraploid cotton (Gossypium hirsutum) genome using a modified CRISPR/Cas9 system. Plant Biotechnology Journal, 18, 45–56.

    Article  CAS  PubMed  Google Scholar 

  183. Zong, Y., Song, Q., Li, C., Jin, S., Zhang, D., Wang, Y., Qiu, J. L., & Gao, C. (2018). Efficient C-to-T base editing in plants using a fusion of nCas9 and human APOBEC3A. Nature Biotechnology, 36, 950–953.

    Article  CAS  Google Scholar 

  184. Wang, A., & Krishnaswamy, S. (2012). Eukaryotic translation initiation factor 4E-mediated recessive resistance to plant viruses and its utility in crop improvement. Molecular Plant Pathology, 13, 795–803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Bastet, A., Zafirov, D., Giovinazzo, N., Guyon-Debast, A., Nogué, F., Robaglia, C., & Gallois, J. L. (2019). Mimicking natural polymorphism in eIF 4E by CRISPR-Cas9 base editing is associated with resistance to potyviruses. Plant Biotechnology Journal, 17, 1736–1750.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Zhang, R., Liu, J., Chai, Z., Chen, S., Bai, Y., Zong, Y., Chen, K., Li, J., Jiang, L., & Gao, C. (2019). Generation of herbicide tolerance traits and a new selectable marker in wheat using base editing. Nature Plants, 5, 480–485.

    Article  CAS  PubMed  Google Scholar 

  187. Li, C., Zong, Y., Wang, Y., Jin, S., Zhang, D., Song, Q., Zhang, R., & Gao, C. (2018). Expanded base editing in rice and wheat using a Cas9-adenosine deaminase fusion. Genome Biology, 19, 59.

    Article  PubMed  PubMed Central  Google Scholar 

  188. Chen, Y., Wang, Z., Ni, H., Xu, Y., Chen, Q., & Jiang, L. (2017). CRISPR/Cas9-mediated base-editing system efficiently generates gain-of-function mutations in Arabidopsis. Science China Life Sciences, 60, 520–523.

    Article  CAS  PubMed  Google Scholar 

  189. Shimatani, Z., Fujikura, U., Ishii, H., Terada, R., Nishida, K., & Kondo, A. (2018). Herbicide tolerance-assisted multiplex targeted nucleotide substitution in rice. Data in Brief, 20, 1325–1331.

    Article  PubMed  PubMed Central  Google Scholar 

  190. Shimatani, Z., Kashojiya, S., Takayama, M., Terada, R., Arazoe, T., Ishii, H., Teramura, H., Yamamoto, T., Komatsu, H., & Miura, K. (2017). Targeted base editing in rice and tomato using a CRISPR-Cas9 cytidine deaminase fusion. Nature Biotechnology, 35, 441–443.

    Article  CAS  PubMed  Google Scholar 

  191. Tian, S., Jiang, L., Cui, X., Zhang, J., Guo, S., Li, M., Zhang, H., Ren, Y., Gong, G., & Zong, M. (2018). Engineering herbicide-resistant watermelon variety through CRISPR/Cas9-mediated base-editing. Plant Cell Reports, 37, 1353–1356.

    Article  CAS  PubMed  Google Scholar 

  192. Li, Y., Zhu, J., Wu, H., Liu, C., Huang, C., Lan, J., Zhao, Y., & Xie, C. (2019). Precise base editing of non-allelic acetolactate synthase genes confers sulfonylurea herbicide resistance in maize. Crop Journal, 8, 449–456.

    Article  Google Scholar 

  193. Veillet, F., Perrot, L., Chauvin, L., Kermarrec, M. P., Guyon-Debast, A., Chauvin, J. E., Nogué, F., & Mazier, M. (2019). Transgene-free genome editing in tomato and potato plants using Agrobacterium-mediated delivery of a CRISPR/Cas9 cytidine base editor. International Journal of Molecular Sciences, 20, 402.

    Article  PubMed Central  Google Scholar 

  194. Wu, J., Chen, C., Xian, G., Liu, D., Lin, L., Yin, S., Sun, Q., Fang, Y., Zhang, H., & Wang, Y. (2020). Engineering herbicide-resistant oilseed rape by CRISPR/Cas9-mediated cytosine base-editing. Plant Biotechnology Journal, 18, 1857.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Maeder, M. L., Linder, S. J., Cascio, V. M., Fu, Y., Ho, Q. H., & Joung, J. K. (2013). CRISPR RNA–guided activation of endogenous human genes. Nature Methods, 10, 977–979.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Gilbert, L. A., Larson, M. H., Morsut, L., Liu, Z., Brar, G. A., Torres, S. E., Stern-Ginossar, N., Brandman, O., Whitehead, E. H., & Doudna, J. A. (2013). CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell, 154, 442–451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Piatek, A., Ali, Z., Baazim, H., Li, L., Abulfaraj, A., Al-Shareef, S., Aouida, M., & Mahfouz, M. M. (2015). RNA-guided transcriptional regulation in planta via synthetic dCas9-based transcription factors. Plant Biotechnology Journal, 13, 578–589.

    Article  CAS  PubMed  Google Scholar 

  198. Li, Z., Zhang, D., Xiong, X., Yan, B., Xie, W., Sheen, J., & Li, J. F. (2017). A potent Cas9-derived gene activator for plant and mammalian cells. Nature Plants, 3, 930–936.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Lowder, L. G., Zhang, D., Baltes, N. J., Paul, J. W., Tang, X., Zheng, X., Voytas, D. F., Hsieh, T. F., Zhang, Y., & Qi, Y. (2015). A CRISPR/Cas9 toolbox for multiplexed plant genome editing and transcriptional regulation. Plant Physiology, 169, 971–985.

    Article  PubMed  PubMed Central  Google Scholar 

  200. Vazquez-Vilar, M., Bernabé-Orts, J. M., Fernandez-del-Carmen, A., Ziarsolo, P., Blanca, J., Granell, A., & Orzaez, D. (2016). A modular toolbox for gRNA–Cas9 genome engineering in plants based on the GoldenBraid standard. Plant Methods, 12, 10.

    Article  PubMed  PubMed Central  Google Scholar 

  201. Dominguez, A. A., Lim, W. A., & Qi, L. S. (2016). Beyond editing: Repurposing CRISPR–Cas9 for precision genome regulation and interrogation. Nature Reviews Molecular Cell Biology, 17, 5.

    Article  CAS  PubMed  Google Scholar 

  202. Hilton, I. B., D’ippolito, A. M., Vockley, C. M., Thakore, P. I., Crawford, G. E., Reddy, T. E., & Gersbach, C. A. (2015). Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nature Biotechnology, 33, 510–517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Qi, L. S., Larson, M. H., Gilbert, L. A., Doudna, J. A., Weissman, J. S., Arkin, A. P., & Lim, W. A. (2013). Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell, 152, 1173–1183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Thakore, P. I., D’ippolito, A. M., Song, L., Safi, A., Shivakumar, N. K., Kabadi, A. M., Reddy, T. E., Crawford, G. E., & Gersbach, C. A. (2015). Highly specific epigenome editing by CRISPR-Cas9 repressors for silencing of distal regulatory elements. Nature Methods, 12, 1143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Kearns, N. A., Pham, H., Tabak, B., Genga, R. M., Silverstein, N. J., Garber, M., & Maehr, R. (2015). Functional annotation of native enhancers with a Cas9–histone demethylase fusion. Nature Methods, 12, 401–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Endo, A., Masafumi, M., Kaya, H., & Toki, S. (2016). Efficient targeted mutagenesis of rice and tobacco genomes using Cpf1 from Francisella novicida. Science and Reports, 6, 38169.

    Article  CAS  Google Scholar 

  207. Tang, X., Liu, G., Zhou, J., Ren, Q., You, Q., Tian, L., Xin, X., Zhong, Z., Liu, B., & Zheng, X. (2018). A large-scale whole-genome sequencing analysis reveals highly specific genome editing by both Cas9 and Cpf1 (Cas12a) nucleases in rice. Genome Biology, 19, 84.

    Article  PubMed  PubMed Central  Google Scholar 

  208. Wang, M., Mao, Y., Lu, Y., Wang, Z., Tao, X., & Zhu, J. K. (2018). Multiplex gene editing in rice with simplified CRISPR-Cpf1 and CRISPR-Cas9 systems. Journal of Integrative Plant Biology, 60, 626–631.

    Article  CAS  PubMed  Google Scholar 

  209. Yin, X., Biswal, A. K., Dionora, J., Perdigon, K. M., Balahadia, C. P., Mazumdar, S., Chater, C., Lin, H. C., Coe, R. A., & Kretzschmar, T. (2017). CRISPR-Cas9 and CRISPR-Cpf1 mediated targeting of a stomatal developmental gene EPFL9 in rice. Plant Cell Reports, 36, 745–757.

    Article  CAS  PubMed  Google Scholar 

  210. Li, B., Rui, H., Li, Y., Wang, Q., Alariqi, M., Qin, L., Sun, L., Ding, X., Wang, F., & Zou, J. (2019). Robust CRISPR/Cpf1 (Cas12a)-mediated genome editing in allotetraploid cotton (Gossypium hirsutum). Plant Biotechnology Journal, 17, 1862–1864.

    Article  PubMed  PubMed Central  Google Scholar 

  211. Zaidi, S. S. E. A., Mahfouz, M. M., & Mansoor, S. (2017). CRISPR-Cpf1: A new tool for plant genome editing. Trends in Plant Science, 22, 550–553.

    Article  CAS  PubMed  Google Scholar 

  212. Mao, Y., Botella, J. R., Liu, Y., & Zhu, J. K. (2019). Gene editing in plants: Progress and challenges. National Science Review, 6, 421–437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Wang, M., Mao, Y., Lu, Y., Tao, X., & Zhu, J. K. (2017). Multiplex gene editing in rice using the CRISPR-Cpf1 system. Molecular Plant, 10, 1011–1013.

    Article  CAS  PubMed  Google Scholar 

  214. Shmakov, S., Abudayyeh, O. O., Makarova, K. S., Wolf, Y. I., Gootenberg, J. S., Semenova, E., Minakhin, L., Joung, J., Konermann, S., & Severinov, K. (2015). Discovery and functional characterization of diverse class 2 CRISPR-Cas systems. Molecular Cell, 60, 385–397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Strecker, J., Jones, S., Koopal, B., Schmid-Burgk, J., Zetsche, B., Gao, L., Makarova, K. S., Koonin, E. V., & Zhang, F. (2019). Engineering of CRISPR-Cas12b for human genome editing. Nature Communications, 10, 1–8.

    Article  Google Scholar 

  216. Burstein, D., Harrington, L. B., Strutt, S. C., Probst, A. J., Anantharaman, K., Thomas, B. C., Doudna, J. A., & Banfield, J. F. (2017). New CRISPR–Cas systems from uncultivated microbes. Nature, 542, 237–241.

    Article  CAS  PubMed  Google Scholar 

  217. Liu, J. J., Orlova, N., Oakes, B. L., Ma, E., Spinner, H. B., Baney, K. L., Chuck, J., Tan, D., Knott, G. J., & Harrington, L. B. (2019). CasX enzymes comprise a distinct family of RNA-guided genome editors. Nature, 566, 218–223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Mehravar, M., Shirazi, A., Nazari, M., & Banan, M. (2019). Mosaicism in CRISPR/Cas9-mediated genome editing. Developmental Biology, 445, 156–162.

    Article  CAS  PubMed  Google Scholar 

  219. Khumsupan, P., Donovan, S., & McCormick, A. J. (2019). CRISPR/Cas in Arabidopsis: Overcoming challenges to accelerate improvements in crop photosynthetic efficiencies. Physiologia Plantarum, 166, 428–437.

    Article  CAS  PubMed  Google Scholar 

  220. USDA Press. (2018). Secretary Perdue issues USDA statement on plant breeding innovation. USDA office of communications press release. USDA Press.

    Google Scholar 

  221. Zhang, D., Zhang, Z., Unver, T., & Zhang, B. (2021). CRISPR/Cas: A powerful tool for gene function study and crop improvement. Journal of Advanced Research, 29, 207–221.

    Article  CAS  PubMed  Google Scholar 

  222. Li, C., Brant, E., Budak, H., & Zhang, B. (2021). CRISPR/Cas: A Nobel Prize award-winning precise genome editing technology for gene therapy and crop improvement. Journal of Zhejiang University. Science. B, 22, 253–284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Udwadia, F., & Singh, S. (2019). Starting the conversation: CRISPR’s role in India. Indian Journal of Medical Ethics, 4, 300–303.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Dr. Khem Singh Gill Akal College of Agriculture, Eternal University for providing required infrastructure and research facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pritesh Vyas.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Negi, C., Vasistha, N.K., Singh, D. et al. Application of CRISPR-Mediated Gene Editing for Crop Improvement. Mol Biotechnol 64, 1198–1217 (2022). https://doi.org/10.1007/s12033-022-00507-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-022-00507-y

Keywords

Navigation