Skip to main content
Log in

The Regulation of let-7c-5p on the Biological Characteristics of Lung Adenocarcinoma Cells by Targeting AURKB

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

To study the modulatory mechanism of let-7c-5p on the biological characteristics of lung adenocarcinoma (LUAD) cells by targeting AURKB. Differentially expressed genes (DEGs) were screened by bioinformatics analysis. CCK-8, colony formation, scratch healing, Transwell, and flow cytometry assays were employed to test biological functions of LUAD cells. Western Blot was undertaken to assay the protein level of AURKB, and qRT-PCR was undertaken to test AURKB mRNA and let-7c-5p expression. Dual-luciferase reporter gene method was applied to detect the interaction between AURKB and let-7c-5p. Let-7c-5p was much likely to target AURKB expression. Let-7c-5p was poorly expressed in LUAD cells and suppressed AURKB. Silencing AURKB or overexpressing let-7c-5p both could suppress proliferation, migration, and invasion and stimulate apoptosis, while overexpressing the two simultaneously could reverse such effect. Forced expression of let-7c-5p inhibited proliferation, migration, and invasion and accelerated apoptosis of LUAD cells by inhibiting AURKB, which may provide a new way to understand the malignant progression of LUAD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The data used to support the findings of this study are included within the article. The data and materials in the current study are available from the corresponding author on reasonable request.

References

  1. Sung, H., et al. (2021). Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 71, 209–249. https://doi.org/10.3322/caac.21660

    Article  Google Scholar 

  2. Siegel, R. L., Miller, K. D., & Jemal, A. (2018). Cancer statistics. CA: A Cancer Journal for Clinicians, 68, 7–30. https://doi.org/10.3322/caac.21442

    Article  Google Scholar 

  3. Devarakonda, S., Morgensztern, D., & Govindan, R. (2015). Genomic alterations in lung adenocarcinoma. The Lancet. Oncology, 16, e342-351. https://doi.org/10.1016/s1470-2045(15)00077-7

    Article  CAS  PubMed  Google Scholar 

  4. Ma, D., et al. (2020). Circ_0007142/miR-186/FOXK1 axis promoted lung adenocarcinoma progression. American Journal of Translational Research, 12, 4728–4738.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Dong, H. X., Wang, R., Jin, X. Y., Zeng, J., & Pan, J. (2018). LncRNA DGCR5 promotes lung adenocarcinoma (LUAD) progression via inhibiting hsa-mir-22-3p. Journal of Cellular Physiology, 233, 4126–4136. https://doi.org/10.1002/jcp.26215

    Article  CAS  PubMed  Google Scholar 

  6. Nie, M., et al. (2020). AURKB promotes gastric cancer progression via activation of CCND1 expression. Aging, 12, 1304–1321. https://doi.org/10.18632/aging.102684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Carmena, M., & Earnshaw, W. C. (2003). The cellular geography of aurora kinases. Nature reviews. Molecular Cell Biology, 4, 842–854. https://doi.org/10.1038/nrm1245

    Article  CAS  PubMed  Google Scholar 

  8. Goldenson, B., & Crispino, J. D. (2015). The aurora kinases in cell cycle and leukemia. Oncogene, 34, 537–545. https://doi.org/10.1038/onc.2014.14

    Article  CAS  PubMed  Google Scholar 

  9. Huang, D., et al. (2019). Relation of AURKB over-expression to low survival rate in BCRA and reversine-modulated aurora B kinase in breast cancer cell lines. Cancer Cell International, 19, 166. https://doi.org/10.1186/s12935-019-0885-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bertran-Alamillo, J., et al. (2019). AURKB as a target in non-small cell lung cancer with acquired resistance to anti-EGFR therapy. Nature Communications, 10, 1812. https://doi.org/10.1038/s41467-019-09734-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Boyerinas, B., Park, S. M., Hau, A., Murmann, A. E., & Peter, M. E. (2010). The role of let-7 in cell differentiation and cancer. Endocrine-Related Cancer, 17, F19-36. https://doi.org/10.1677/erc-09-0184

    Article  CAS  PubMed  Google Scholar 

  12. Tang, H., et al. (2019). miR-let-7b and miR-let-7c suppress tumourigenesis of human mucosal melanoma and enhance the sensitivity to chemotherapy. Journal of Experimental & Clinical Cancer Research : CR, 38, 212. https://doi.org/10.1186/s13046-019-1190-3

    Article  CAS  PubMed Central  Google Scholar 

  13. Nadiminty, N., et al. (2012). MicroRNA let-7c is downregulated in prostate cancer and suppresses prostate cancer growth. PLoS ONE, 7, e32832. https://doi.org/10.1371/journal.pone.0032832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wang, L., Li, J., Li, Y., & Pang, L. B. (2020). Hsa-let-7c exerts an anti-tumor function by negatively regulating ANP32E in lung adenocarcinoma. Tissue & Cell, 65, 101372. https://doi.org/10.1016/j.tice.2020.101372

    Article  CAS  Google Scholar 

  15. Han, X., Zhang, J. J., Han, Z. Q., Zhang, H. B., & Wang, Z. A. (2018). Let-7b attenuates cisplatin resistance and tumor growth in gastric cancer by targeting AURKB. Cancer Gene Therapy, 25, 300–308. https://doi.org/10.1038/s41417-018-0048-8

    Article  CAS  PubMed  Google Scholar 

  16. Cai, L., Wang, Z., Zheng, H., & Xu, L. (2020). The let-7c/HoxB7 axis regulates the cell proliferation, migration and apoptosis in hepatocellular carcinoma. Anti-Cancer Drugs, 31, 6–18. https://doi.org/10.1097/cad.0000000000000843

    Article  CAS  PubMed  Google Scholar 

  17. Nadiminty, N., et al. (2012). MicroRNA let-7c suppresses androgen receptor expression and activity via regulation of Myc expression in prostate cancer cells. Journal of Biological Chemistry, 287, 1527–1537. https://doi.org/10.1074/jbc.M111.278705

    Article  CAS  Google Scholar 

  18. Fu, X., Mao, X., Wang, Y., Ding, X., & Li, Y. (2017). Let-7c-5p inhibits cell proliferation and induces cell apoptosis by targeting ERCC6 in breast cancer. Oncology Reports, 38, 1851–1856. https://doi.org/10.3892/or.2017.5839

    Article  CAS  PubMed  Google Scholar 

  19. Wan, B., Huang, Y., Liu, B., Lu, L., & Lv, C. (2019). AURKB: A promising biomarker in clear cell renal cell carcinoma. PeerJ, 7, e7718. https://doi.org/10.7717/peerj.7718

    Article  PubMed  PubMed Central  Google Scholar 

  20. Smith, S. L., et al. (2005). Overexpression of aurora B kinase (AURKB) in primary non-small cell lung carcinoma is frequent, generally driven from one allele, and correlates with the level of genetic instability. British Journal of Cancer, 93, 719–729. https://doi.org/10.1038/sj.bjc.6602779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chieffi, P., et al. (2004). Aurora B expression in normal testis and seminomas. Journal of Endocrinology, 181, 263–270. https://doi.org/10.1677/joe.0.1810263

    Article  CAS  Google Scholar 

  22. Sorrentino, R., et al. (2005). Aurora B overexpression associates with the thyroid carcinoma undifferentiated phenotype and is required for thyroid carcinoma cell proliferation. Journal of Clinical Endocrinology and Metabolism, 90, 928–935. https://doi.org/10.1210/jc.2004-1518

    Article  CAS  PubMed  Google Scholar 

  23. Hegyi, K., Egervari, K., Sandor, Z., & Mehes, G. (2012). Aurora kinase B expression in breast carcinoma: Cell kinetic and genetic aspects. Pathobiology, 79, 314–322. https://doi.org/10.1159/000338082

    Article  CAS  PubMed  Google Scholar 

  24. Tanaka, S., et al. (2008). Aurora kinase B is a predictive factor for the aggressive recurrence of hepatocellular carcinoma after curative hepatectomy. British Journal of Surgery, 95, 611–619. https://doi.org/10.1002/bjs.6011

    Article  CAS  Google Scholar 

  25. Yu, D. H., et al. (2020). Analysis of the interaction network of hub miRNAs-hub genes, being involved in idiopathic pulmonary fibers and its emerging role in non-small cell lung cancer. Frontiers in Genetics, 11, 302. https://doi.org/10.3389/fgene.2020.00302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wu, Y., et al. (2020). Circular RNA circCORO1C promotes laryngeal squamous cell carcinoma progression by modulating the let-7c-5p/PBX3 axis. Molecular cancer, 19, 99. https://doi.org/10.1186/s12943-020-01215-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

LW and HD contributed to the study design. XX conducted the literature search. LW acquired the data. LW wrote the article. XX performed data analysis and drafted. HD revised the article. All the authors gave the final approval of the version to be submitted.

Corresponding author

Correspondence to Hong Du.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical Approval

Not applicable.

Consent for Publication

All authors consent to submit the manuscript for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Xiao, X. & Du, H. The Regulation of let-7c-5p on the Biological Characteristics of Lung Adenocarcinoma Cells by Targeting AURKB. Mol Biotechnol 64, 526–534 (2022). https://doi.org/10.1007/s12033-021-00446-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-021-00446-0

Keywords

Navigation