Skip to main content

Advertisement

Log in

The Modification of Cell Wall Properties by Expression of Recombinant Resilin in Transgenic Plants

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Plant tissue is composed of many different types of cells. Plant cells required to withstand mechanical pressure, such as vessel elements and fibers, have a secondary cell wall consisting of polysaccharides and lignin, which strengthen the cell wall structure and stabilize the cell shape. Previous attempts to alter the properties of the cell wall have mainly focused on reducing the amount of lignin or altering its structure in order to ease its extraction from raw woody materials for the pulp and paper and biorefinery industries. In this work, we propose the in vivo modification of the cell wall structure and mechanical properties by the introduction of resilin, an elastic protein that is able to crosslink with lignin monomers during cell wall synthesis. The effects of resilin were studied in transgenic eucalyptus plants. The protein was detected within the cell wall and its expression led to an increase in the elastic modulus of transgenic stems. In addition, transgenic stems displayed a higher yield point and toughness, indicating that they were able to absorb more energy before breaking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bonawitz, N. D., & Chapple, C. (2010). The genetics of lignin biosynthesis: Connecting genotype to phenotype. Annual Review of Genetics, 44, 337–363.

    Article  CAS  Google Scholar 

  2. Chen, F., & Dixon, R. A. (2007). Lignin modification improves fermentable sugar yields for biofuel production. Nature Biotechnology, 25, 759–761.

    Article  CAS  Google Scholar 

  3. Eudes, A., et al. (2012). Biosynthesis and incorporation of side-chain-truncated lignin monomers to reduce lignin polymerization and enhance saccharification. Plant Biotechnology Journal, 10, 609–620.

    Article  CAS  Google Scholar 

  4. Liang, H., et al. (2008). Improved sugar release from lignocellulosic material by introducing a tyrosine-rich cell wall peptide gene in poplar. CLEAN – Soil, Air, Water, 36, 662–668.

    Article  CAS  Google Scholar 

  5. Abramson, M., Shoseyov, O., Hirsch, S., & Shani, Z. (2013). Genetic modifications of plant cell walls to increase biomass and bioethanol production. In J. Lee (Ed.), Advanced biofuels and bioproducts. New York: Springer.

    Google Scholar 

  6. Baucher, M., Halpin, C., Petit-Conil, M., & Boerjan, W. (2003). Lignin: Genetic engineering and impact on pulping. Critical Reviews in Biochemistry and Molecular Biology, 38, 305–350.

    Article  CAS  Google Scholar 

  7. Vanholme, R., Morreel, K., Ralph, J., & Boerjan, W. (2008). Lignin engineering. Current Opinion in Plant Biology, 11, 278–285.

    Article  CAS  Google Scholar 

  8. Boudet, A.-M. (2007). Evolution and current status of research in phenolic compounds. Phytochemistry, 68, 2722–2735.

    Article  CAS  Google Scholar 

  9. Ralph, J., et al. (2004). Lignins: Natural polymers from oxidative coupling of 4-hydroxyphenyl- propanoids. Phytochemistry Reviews, 3, 29–60.

    Article  CAS  Google Scholar 

  10. Cong, F., Diehl, B. G., Hill, J. L., Brown, N. R., & Tien, M. (2013). Covalent bond formation between amino acids and lignin: Cross-coupling between proteins and lignin. Phytochemistry, 96, 449–456.

    Article  CAS  Google Scholar 

  11. Diehl, B. G., & Brown, N. R. (2014). Lignin cross-links with cysteine- and tyrosine-containing peptides under biomimetic conditions. Journal of Agriculture and Food Chemistry, 62, 10312–10319.

    Article  CAS  Google Scholar 

  12. Mcdougall, G. J., Stewart, D., & Morrison, I. M. (1996). Tyrosine residues enhance cross-linking of synthetic proteins into lignin-like dehydrogenation products. Phytochemistry, 41, 43–47.

    Article  CAS  Google Scholar 

  13. Weis-Fogh, T. (1960). A rubber-like protein in insect cuticle. Journal of Experimental Biology, 37, 887–907.

    Google Scholar 

  14. Qin, G., et al. (2009). Expression, cross-linking, and characterization of recombinant chitin binding resilin. Biomacromolecules, 10, 3227–3234.

    Article  CAS  Google Scholar 

  15. Young, D., & Bennet-Clark, H. (1995). The role of the tymbal in cicada sound production. Journal of Experimental Biology, 198, 1001–1020.

    CAS  Google Scholar 

  16. Bennet-Clark, H. C., & Lucey, E. C. A. (1967). The jump of the flea: A study of the energetics and a model of the mechanism. Journal of Experimental Biology, 47, 59–67.

    CAS  Google Scholar 

  17. Burrows, M., & Sutton, G. P. (2012). Locusts use a composite of resilin and hard cuticle as an energy store for jumping and kicking. Journal of Experimental Biology, 215, 3501–3512.

    Article  Google Scholar 

  18. Michels, J., Vogt, J., & Gorb, S. N. (2012). Tools for crushing diatoms—Opal teeth in copepods feature a rubber-like bearing composed of resilin. Scientific Reports, 2, 1–35.

    Article  Google Scholar 

  19. Elvin, C. M., et al. (2005). Synthesis and properties of crosslinked recombinant pro-resilin. Nature, 437, 999–1002.

    Article  CAS  Google Scholar 

  20. Rivkin, A., et al. (2015). Bionanocomposite films from resilin-CBD bound to cellulose nanocrystals. Industrial Biotechnology, 11, 44–58.

    Article  CAS  Google Scholar 

  21. Verker, R., Rivkin, A., Zilberman, G., & Shoseyov, O. (2014). Insertion of nano-crystalline cellulose into epoxy resin via resilin to construct a novel elastic adhesive. Cellulose, 21, 4369–4379.

    Article  CAS  Google Scholar 

  22. Yang, F., et al. (2013). Engineering secondary cell wall deposition in plants. Plant Biotechnology Journal, 11, 325–335.

    Article  CAS  Google Scholar 

  23. Van Acker, R., et al. (2013). Lignin biosynthesis perturbations affect secondary cell wall composition and saccharification yield in Arabidopsis thaliana. Biotechnology for Biofuels, 6, 46.

    Article  Google Scholar 

  24. Mansfield, S. D., Kang, K.-Y., & Chapple, C. (2012). Designed for deconstruction—Poplar trees altered in cell wall lignification improve the efficacy of bioethanol production. New Phytologist, 194, 91–101.

    Article  CAS  Google Scholar 

  25. Sanami, M., et al. (2015). Biophysical and biological characterisation of collagen/resilin-like protein composite fibres. Biomedical Materials, 10, 65005.

    Article  CAS  Google Scholar 

  26. McGann, C. L., Levenson, E. A., & Kiick, K. L. (2013). Resilin-based hybrid hydrogels for cardiovascular tissue engineering. Macromolecules, 214, 203–213.

    CAS  Google Scholar 

  27. Hauffe, K. D., et al. (1991). A parsley 4CL-1 promoter fragment specifies complex expression patterns in transgenic tobacco. The Plant Cell, 3, 435–443.

    Article  CAS  Google Scholar 

  28. Zhong, R., et al. (2005). Arabidopsis fragile fiber8, which encodes a putative glucuronyltransferase, is essential for normal secondary wall synthesis. Plant Cell, 17, 3390–3408.

    Article  CAS  Google Scholar 

  29. Qin, G., et al. (2011). Recombinant exon-encoded resilins for elastomeric biomaterials. Biomaterials, 32, 9231–9243.

    Article  CAS  Google Scholar 

  30. Shani, Z., Dekel, M., Tsabary, G., & Shoseyov, O. (1997). Cloning and characterization of elongation specific endo-1,4-β-glucanase (cel1) from Arabidopsis thaliana. Plant Molecular Biology, 34, 837–842.

    Article  CAS  Google Scholar 

  31. Carrillo, F., et al. (2005). Nanoindentation of polydimethylsiloxane elastomers: Effect of crosslinking, work of adhesion, and fluid environment on elastic modulus. Journal of Materials Research, 20, 2820–2830.

    Article  CAS  Google Scholar 

  32. Donaldson, L. A. (2001). Lignification and lignin topochemistry—An ultrastructural view. Phytochemistry, 57, 859–873.

    Article  CAS  Google Scholar 

  33. Prakash, M. G., & Gurumurthi, K. (2009). Genetic transformation and regeneration of transgenic plants from precultured cotyledon and hypocotyl explants of Eucalyptus tereticornis Sm. using Agrobacterium tumefaciens. In Vitro Cellular & Developmental Biology: Plant, 45, 429–434.

    Article  CAS  Google Scholar 

  34. Paciorek, T., Sauer, M., Balla, J., Wiśniewska, J., & Friml, J. (2006). Immunocytochemical technique for protein localization in sections of plant tissues. Nature Protocols, 1, 104–107.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by Futuragene Ltd, Rehovot, Israel. The work was performed of the Minerva Center for Bio-hybrid Complex Systems.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oded Shoseyov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Preis, I., Abramson, M. & Shoseyov, O. The Modification of Cell Wall Properties by Expression of Recombinant Resilin in Transgenic Plants. Mol Biotechnol 60, 310–318 (2018). https://doi.org/10.1007/s12033-018-0074-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-018-0074-7

Keywords

Navigation