Skip to main content
Log in

A Nucleotide Signature for Identification of Aglaia stellatopilosa Pannell

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Members of the genus Aglaia have been reported to contain bioactive phytochemicals. The genus, belonging to the Meliaceae family, is represented by at least 120 known species of woody trees or shrubs in the tropical rain forest. As some of these species are very similar in their morphology, taxonomic identification can be difficult. A reliable and definitive molecular method which can identify Aglaia to the level of the species will hence be useful in comparing the content of specific bioactive compounds between the species of this genus. Here, we report the analysis of DNA sequences in the internal transcribed spacer (ITS) of the nuclear ribosomal DNA and the observation of a unique nucleotide signature in the ITS that can be used for the identification of Aglaia stellatopilosa. The nucleotide signature consists of nine bases over the length of the ITS sequence (654 bp). This uniqueness was validated in 37 samples identified as Aglaia stellatopilosa by an expert taxonomist, whereas the nucleotide signature was lacking in a selection of other Aglaia species and non-Aglaia genera. This finding suggests that molecular typing could be utilized in the identification of Aglaia stellatopilosa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Pannell, C. M. (2007). Aglaia (Meliaceae). In E. Soepadmo, L. G. Saw, R. C. K. Chung, & R. Kiew (Eds.), Tree Flora of Sabah and Sarawak, Vol. 6, pp. 24–107.

  2. Pannell, C. M. (1992). A taxonomic monograph of the genus Aglaia Lour. (Meliaceae). HMSO, London, United Kingdom: Kew Bulletin Additional Series XVI.

  3. Ebada, S. S., Lajkiewicz, N., Porco, J. A., Jr., Li-Weber, M., & Proksch, P. (2011). Chemistry and biology of rocaglamides (=flavaglines) and related derivatives from Aglaia species (Meliaceae). In A. D. Kinghorn, H. Falk, & J. Kobayashi (Eds.), Progress in the chemistry of organic natural products, Vol. 94, pp. 1–58.

  4. Proksch, P., Edrada, R. A., Ebel, R., Bohnenstengel, F. I., & Nugroho, B. W. (2001). Chemistry and biological activity of rocaglamide derivatives and related compounds in Aglaia species (Meliaceae). Current Organic Chemistry, 5, 923–938.

    Article  CAS  Google Scholar 

  5. Kim, S., Salim, A. A., Swanson, S. M., & Kinghorn, A. D. (2006). Potential of cyclopenta[b]benzofurans from Aglaia species in cancer chemotherapy. Anticancer Agents in Medicinal Chemistry, 6(4), 319–345.

    Article  CAS  Google Scholar 

  6. Ribeiro, N., Thuaud, F., Nebigil, C., & Désaubry, L. (2012). Recent advances in the biology and chemistry of the flavaglines. Bioorganic & Medicinal Chemistry, 20, 1857–1864.

    Article  CAS  Google Scholar 

  7. Pan, L., Acuña, U. M., Li, J., Jena, N., Ninh, T. N., Pannell, C. M., et al. (2013). Bioactive flavaglines and other constituents isolated from Aglaia perviridis. Journal of Natural Products, 76(3), 394–404.

    Article  CAS  Google Scholar 

  8. Hwang, B. Y., Su, B. N., Chai, H., Mi, Q., Kardono, L. B., Afriastini, J. J., et al. (2004). Silvestrol and episilvestrol, potential anticancer rocaglate derivatives from Aglaia silvestris. Journal of Organic Chemistry, 69, 3350–3358. [Erratum: Journal of Organic Chemistry (2004) 69(18):6156]

    Google Scholar 

  9. Yeo, T. C. (2009). In Y. H. Sen (Ed.), Biodiversity and national development: Achievements, opportunities and challenges (pp. 90–95). Kuala Lumpur: Akademi Sains Malaysia.

  10. Kinghorn, A. D., Pan, L., Fletcher, J. N., & Chai, H. (2011). The relevance of higher plants in lead compound discovery programs. Journal of Natural Products, 74(6), 1539–1555.

    Article  CAS  Google Scholar 

  11. Pannell, C. M. (2004). Three new species, two new subspecies and five new combinations at the subspecific level in Aglaia Lour. (Meliaceae). Kew Bulletin, 59, 87–94.

    Article  Google Scholar 

  12. Baldwin, B. G. (1992). Phylogenetic utility of the internal transcribed spacers of nuclear ribosomal DNA in plants: an example from the Compositae. Molecular Phylogenetics and Evolution, 1, 3–16.

    Article  CAS  Google Scholar 

  13. Baldwin, B. G., Sanderson, M. J., Porter, J. M., Wojciechowski, M. F., Campbell, C. S., & Donoghue, M. J. (1995). The ITS region of nuclear ribosomal DNA: A valuable source of evidence on angiosperm phylogeny. Annals of the Missouri Botanical Garden, 82, 247–277.

    Article  Google Scholar 

  14. Go¨ker, M., Garcı′a-Bla′zquez, G., Voglmayr, H. T., Tellerı′a, M., & Martı′n, M. P. (2009). Molecular taxonomy of phytopathogenic fungi: A case study in Peronospora. PLoS ONE, 4(7), e6319. doi:10.1371/journal.pone.0006319.

    Article  Google Scholar 

  15. Kittelmann, S., Naylor, G. E., Koolaard, J. P., & Janssen, P. H. (2012). A proposed taxonomy of anaerobic fungi (Class Neocallimastigomycetes) suitable for large-scale sequence-based community structure analysis. PLoS ONE, 7(5), e36866. doi:10.1371/journal.pone.0036866.

    Article  CAS  Google Scholar 

  16. Nilsson, R. H., Ryberg, M., Abarenkov, K., Sjökvist, E., & Kristiansson, E. (2009). The ITS region as a target for characterization of fungal communities using emerging sequencing technologies. FEMS Microbiology Letters, 296(1), 97–101.

    Article  CAS  Google Scholar 

  17. D’Auria, G., Pushker, R., & Rodriguez-Valera, F. (2006). IWoCS: Analyzing ribosomal intergenic transcribed spacers configuration and taxonomic relationships. Bioinformatics, 22(5), 527–531.

    Article  Google Scholar 

  18. Conrads, G., Citron, D. M., Tyrrell, K. L., Horz, H. P., & Goldstein, E. J. C. (2005). 16S–23S rRNA gene internal transcribed spacer sequences for analysis of the phylogenetic relationships among species of the genus Porphyromonas. International Journal of Systematic and Evolutionary Microbiology, 55, 607–613.

    Article  CAS  Google Scholar 

  19. El Karkouri, K., Murat, C., Zampieri, E., & Bonfante, P. (2007). Identification of the internal transcribed spacer sequence motifs in truffles: A first step toward their DNA barcoding. Applied and Environmental Microbiology, 27(16), 5320–5330.

    Article  Google Scholar 

  20. Chen, S., Yao, H., Han, J., Liu, C., Song, J., Shi, L., et al. (2010). Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species. PLoS ONE, 5, e8613. doi:10.1371/journal.pone.0008613.

    Article  Google Scholar 

  21. Tripathi, A. M., Tyagi, A., Kumar, A., Singh, A., Singh, S., Chaudhary, L. B., et al. (2013). The internal transcribed spacer (ITS) region and trnhH-psbA are suitable candidate loci for DNA barcoding of tropical tree species of India. PLoS ONE, 8(2), e57934. doi:10.1371/journal.pone.0057934.

    Article  CAS  Google Scholar 

  22. Li, D. Z., Gao, L. M., Li, H. T., Wang, H., Ge, X. J., Liu, J. Q., et al. (2011). Comparative analysis of a larger dataset indicates that internal transcribed spacer (ITS) should be incorporated into the core barcode for seed plants. PNAS, 108(49), 19641–19646.

    Article  CAS  Google Scholar 

  23. Man, S. M., Kaakoush, N. O., Octavia, S., & Mitchell, H. (2010). The internal transcribed spacer region, a new tool for use in species differentiation and delineation of systematic relationships within the Campylobacter genus. Applied and Environmental Microbiology, 76(10), 3071–3081.

    Article  CAS  Google Scholar 

  24. Schoch, C. L., Seifert, K. A., Huhndorf, S., Robert, V., Spouge, J. L., Levesque, C. A., Chen, W., and Fungal Barcoding Consortium. (2012). Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for fungi. PNAS, 109, 6241–6246.

    Article  Google Scholar 

  25. Gibbs, A. J., Armstrong, J. S., & Gibbs, M. J. (2004). A type of nucleotide motif that distinguishes Tobamovirus species more efficiently than nucleotide signatures. Archives of Virology, 149(10), 1941–1954.

    CAS  Google Scholar 

  26. Edwards, K., Johnstone, C., & Thompson, C. (1991). A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucleic Acids Research, 19(6), 1349.

    Article  CAS  Google Scholar 

  27. Sun, Y., Skinner, D. Z., Liang, G. H., & Hulbert, H. (1994). Phylogenetic analysis of Sorghum and related taxa using internal transcribed spacers of nuclear ribosomal DNA. Theoretical and Applied Genetics, 89, 26–32.

    Article  CAS  Google Scholar 

  28. Zhang, Z., Schwartz, S., Wagner, L., & Miller, W. (2000). A greedy algorithm for aligning DNA sequences. Journal of Computational Biology, 7(1–2), 203–214.

    Article  CAS  Google Scholar 

  29. Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., et al. (2007). Clustal W and Clustal X version 2.0. Bioinformatics, 23(21), 2947–2948.

    Article  CAS  Google Scholar 

  30. Muellner, A. N., Samuel, R., Chase, M. W., Pannell, C. M., & Greger, H. (2005). Aglaia (Meliaceae): An evaluation of taxonomic concepts based on DNA data and secondary metabolites. American Journal of Botany, 92(3), 534–543.

    Article  CAS  Google Scholar 

  31. Hollingsworth, P. M. (2011). Refining the DNA barcode for land plants. Proceedings of the National Academy of Sciences of the United States of America, 108(49), 19451–19452.

    Article  CAS  Google Scholar 

  32. Hollingsworth, P. M., Graham, S. W., & Little, D. P. (2011). Choosing and using a plant DNA barcode. PLoS ONE, 6(5), e19254.

    Article  CAS  Google Scholar 

  33. Linder, C., Moore, L., & Jackson, R. (2000). A universal molecular method for identifying underground plant parts to species. Molecular Ecology, 9, 1549–1559.

    Article  CAS  Google Scholar 

  34. Edwards, D., Horn, A., Taylor, D., Savolainen, V., & Hawkins, J. A. (2008). DNA barcoding of a large genus, Aspalathus L. (Fabaceae). Taxon, 57, 1317–1327.

    Google Scholar 

  35. Steele, P. R., Friar, L. M., Gilbert, L. E., & Jansen, R. K. (2010). Molecular systematics of the neotropical genus Psiguria (Cucurbitaceae): Implications for phylogeny and species identification. American Journal of Botany, 97(1), 156–173.

    Article  CAS  Google Scholar 

  36. Khan, S., Al-Qurainy, F., Nadeem, M., & Tarroum, M. (2012). Development of genetic markers for Ochradenus arabicus (Resedaceae), an endemic medicinal plant of Saudi Arabia. Genetic and Molecular Research, 11(2), 1300–1308.

    Article  CAS  Google Scholar 

  37. Srirama, R., Senthilkumar, U., Sreejayan, N., Ravikanth, G., Gurumurthy, B. R., Shivanna, M. B., et al. (2010). Assessing species admixtures in raw drug trade of Phyllanthus, a hepato-protective plant using molecular tools. Journal of Ethnopharmacology, 130, 208–215.

    Article  CAS  Google Scholar 

  38. Schori, M., & Showalter, A. M. (2011). DNA barcoding as a means for identifying medicinal plants of Pakistan. Pakistan Journal of Botany, 43, 1–4.

    CAS  Google Scholar 

  39. Zhi, X. Y., Li, W. J., & Stackebrandt, E. (2009). An update of the structure and 16S rRNA gene sequence-based definition of higher ranks of the class Actinobacteria, with the proposal of two new suborders and four new families and emended descriptions of the existing higher taxa. International Journal of Systematic and Evolutionary Microbiology, 59, 589–608.

    Article  CAS  Google Scholar 

  40. Stackebrandt, E., Rainey, F. A., & Ward-Rainey, N. L. (1997). Proposal for a new hierarchic classification system, Actinobacteria classis nov. International Journal of Systematic Bacteriology, 47, 479–491.

    Article  Google Scholar 

  41. Marconi, R. T., & Garon, C. F. (1992). Development of polymerase chain reaction primer sets for diagnosis of Lyme disease and for species-specific identification of Lyme disease isolates by 16S rRNA signature nucleotide analysis. Journal of Clinical Microbiology, 30, 2830–2834.

    CAS  Google Scholar 

  42. Esmaelizad, M., Ashtiani, M. P., Jelokhani-Niaraki, S., & Hashemnejad, K. (2012). Identification of 23 specific nucleotide patterns in the HN gene of Newcastle disease viruses isolated from Iran. Turkish Journal of Biology, 36(2), 135–142.

    CAS  Google Scholar 

  43. White, T. J., Bruns, T., Lee, S., & Taylor, J. (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: M. A. Innis, D. H. Gelfand, J. J. Sninsky, & T. J. White (Eds.), PCR protocols (pp 315–322). San Diego: Academic.

  44. Hřibová, E., Čížková, J., Christelová, P., Taudien, S., de Langhe, E., & Doležel, J. (2011). The ITS1-5.8S-ITS2 sequence region in the Musaceae: Structure, diversity and use in molecular phylogeny. PLoS ONE, 6(3), e17863.

    Article  Google Scholar 

  45. Song, J., Shi, L., Li, D., Sun, Y., Niu, Y., Chen, Z., et al. (2012). Extensive pyrosequencing reveals frequent intra-genomic variations of internal transcribed spacer regions of nuclear ribosomal DNA. PLoS ONE, 7(8), e43971.

    Article  CAS  Google Scholar 

  46. Chen, Y. C., Eisner, J. D., Kattar, M. M., Rassoulian-Barrett, S. L., Lafe, K., Bui, U., et al. (2001). Polymorphic internal transcribed spacer region 1 DNA sequences identify medically important yeasts. Journal of Clinical Microbiology, 39(11), 4042–4051.

    Article  CAS  Google Scholar 

  47. Marrelli, M. T., Sallum, M. A. M., & Marinotti, O. (2006). The second internal transcribed spacer of nuclear ribosomal DNA as a tool for Latin American Anopheline taxonomy: A critical review. Memórias do Instituto Oswaldo Cruz, 101(8), 817–832.

    Article  CAS  Google Scholar 

  48. Bailey, C. D., Carr, T. G., Harris, S. A., & Hughes, C. E. (2003). Characterization of angiosperm nrDNA polymorphism, paralogy, and pseudogenes. Molecular Phylogenetics and Evolution, 29, 435–455.

    Article  CAS  Google Scholar 

  49. Givnish, T. J. (2010). Ecology of plant speciation. Taxon, 59(5), 1326–1366.

    Google Scholar 

  50. Muellner, A. N., Greger, H., & Pannell, C. M. (2009). Genetic diversity and geographic structure in Aglaia elaeagnoidea (Meliaceae, Sapindales), a morphologically complex tree species, near two extremes of its distribution. Blumea, 54, 207–216.

    Article  Google Scholar 

Download references

Acknowledgments

We thank the Sarawak State Government for funding this project. We also wish to thank Dr. Rita Manurung for her comments and support for this project. Special thanks to the Sarawak Biodiversity Centre Traditional Knowledge Documentation Group for collecting the Aglaia samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiong Chia Yeo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 650 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ng, B.L.N., Omarzuki, M., Lau, G.S.K. et al. A Nucleotide Signature for Identification of Aglaia stellatopilosa Pannell. Mol Biotechnol 56, 671–679 (2014). https://doi.org/10.1007/s12033-014-9746-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-014-9746-0

Keywords

Navigation