Skip to main content
Log in

Anatomical and Physiological Differences and Differentially Expressed Genes Between the Green and Yellow Leaf Tissue in a Variegated Chrysanthemum Variety

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

The leaves of the chrysanthemum variety ‘NAU04-1-31-1’ are variegated with distinct green and yellow sectors. The chlorophyll content of the yellow leaf tissue is less than that in the green one. The chloroplasts in the yellow leaf tissue were vacuolated, lacked thylakoid membrane structure and contained clusters of plastoglobuli with few or no starch grains. The yellow leaf tissue was more sensitive to photo-inhibition than the green leaf tissue. Suppression subtractive hybridization (SSHs) libraries were constructed to identify genes which were differentially transcribed in the two tissue types. The sequencing of 339 SSH clones identified 150 unigenes (93 singletons and 57 contigs), of which 85 were differentially transcribed in the green leaf tissue and 65 in the yellow leaf tissue. Unigenes associated with photosynthesis were particularly frequent, and many of these genes were up-regulated in the yellow leaf tissue. Both CmChlH which encodes the large subunit of Mg-chelatase and CmFtsH (ATP-dependent metalloprotease) were up-regulated in the yellow leaf tissue, and their transcription was regulated by light.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Falbel, T. G., Meehl, J. B., & Staehelin, L. A. (1996). Severity of mutant phenotype in a series of chlorophyll-deficient wheat mutants depends on light intensity and the severity of the block in chlorophyll synthesis. Plant Physiology, 112, 821–832.

    Article  CAS  Google Scholar 

  2. Killough, D. T., & Horlacher, W. R. (1933). The inheritance of virescent yellow and red plant colors in cotton. Genetics, 18, 329–333.

    CAS  Google Scholar 

  3. Wu, Z. M., Zhang, X., He, B., Diao, L. P., Sheng, S. L., Wang, J. L., et al. (2007). A chlorophyll-deficient rice mutant with impaired chlorophyllide esterification in chlorophyll biosynthesis. Plant Physiology, 145, 29–40.

    Article  CAS  Google Scholar 

  4. Gustafsson, A. (1940). The mutation system of the chlorophyll apparatus. Lunds University Arsskrift, 36, 1–40.

    Google Scholar 

  5. He, B., Liu, L. L., Zhang, W. W., & Wan, J. M. (2006). Plant leaf color mutants. Plant Physiology Communications, 42, 1–8.

    CAS  Google Scholar 

  6. Guo, J. W., Guo, J. K., Zhao, Y., & Du, L. F. (2007). Changes of photosystem II electron transport in the chlorophyll-deficient oilseed rape mutant studied by chlorophyll fluorescence and thermoluminescence. Journal of Integrative Plant Biology, 49, 698–705.

    Article  CAS  Google Scholar 

  7. Wang, H. Y., Hu, Y. H., Liu, Y., Zhou, Y. T., Wang, M. L., & Zhao, Y. (2008). Suppression subtractive hybridization identifies differentially expressed genes in Brassica napus chlorophyll-reduced mutant. Biologia Plantarum, 52, 486–492.

    Article  CAS  Google Scholar 

  8. Masuda, T., Tanaka, A., & Melis, A. (2003). Chlorophyll antenna size adjustments by irradiance in Dunaliella salina involve coordinate regulation of chlorophyll a oxygenase (CAO) and Lhcb gene expression. Plant Molecular Biology, 51, 757–771.

    Article  CAS  Google Scholar 

  9. Nagata, N., Tanaka, R., Satoh, S., & Tanaka, A. (2005). Identification of a vinyl reductase gene for chlorophyll synthesis in Arabidopsis thaliana and implications for the evolution of prochlorococcus species. Plant Cell, 17, 233–240.

    Article  CAS  Google Scholar 

  10. Nakayashiki, T., Nishimura, K., & Inokuchi, H. (1995). Cloning and sequencing of a previously unidentified gene that is involved in the biosynthesis of haem in Escherichia coli. Gene, 153, 67–70.

    Article  CAS  Google Scholar 

  11. Suzuki, J. Y., Bollivar, D. W., & Bauer, C. E. (1997). Genetic analysis of chlorophyll biosynthesis. Annual Review of Genetics, 31, 61–89.

    Article  CAS  Google Scholar 

  12. Hudson, A., Carpenter, R., Doyle, S., & Coen, E. S. (1993). Olive: a key gene required for chlorophyll biosynthesis in Antirrhinum majus. EMBO Journal, 12, 3711–3719.

    CAS  Google Scholar 

  13. Jung, K. H., Hur, J., Ryu, C. H., Choi, Y., Chung, Y. Y., Miyao, A., et al. (2003). Characterization of a rice chlorophyll-deficient mutant using the T-DNA gene-trap system. Plant and Cell Physiology, 44, 463–472.

    Article  CAS  Google Scholar 

  14. Sakamoto, W., Zaltsman, A., Adam, Z., & Takahashi, Y. (2003). Coordinated regulation and complex formation of yellow variegated1 and yellow variegated2, chloroplastic FtsH metalloproteases involved in the repair cycle of photosystem II in Arabidopsis thylakoid membranes. Plant Cell, 15, 2843–2855.

    Article  CAS  Google Scholar 

  15. Takechi, K., Sodmergen, Murata, M., Motoyoshi, F., & Sakamoto, W. (2000). The YELLOW VARIEGATED (VAR2) locus encodes a homologue of FtsH, an ATP-dependent protease in Arabidopsis. Plant and Cell Physiology, 41, 1334–1346.

  16. Degenhardt, J., Al-Masri, A. N., Kurkcuoglu, S., Szankowski, I., & Gau, A. E. (2005). Characterization by suppression subtractive hybridization of transcripts that are differentially expressed in leaves of apple scab-resistant and susceptible cultivars of Malus domestica. Molecular Genetics and Genomics, 273, 326–335.

    Article  CAS  Google Scholar 

  17. Tsuwamoto, R., Fukuoka, H., & Takahata, Y. (2007). Identification and characterization of genes expressed in early embryogenesis from microspores of Brassica napus. Planta, 225, 641–652.

    Article  CAS  Google Scholar 

  18. Xie, J. R., Liang, G. L., Tang, K. X., Zhang, H., Cheng, Z. Q., & Huang, X. Q. (2007). Construction and analyses of SSH cDNA libraries of rose foral color and scent mutant. Acta Horticulturae Sinica, 34, 688–694.

    CAS  Google Scholar 

  19. Hung, C. Y., Sun, Y. H., Chen, J. J., Darlington, D. E., Williams, A. L., Burkey, K. O., et al. (2010). Identification of a Mg-protoporphyrin IX monomethyl ester cyclase homologue, EaZIP, differentially expressed in variegated Epipremnum aureum ‘Golden Pothos’ is achieved through a unique method of comparative study using tissue regenerated plants. Journal of Experimental Botany, 61, 1483–1493.

    Article  CAS  Google Scholar 

  20. Chen, S. M., Miao, H. B., Chen, F. D., Jiang, B. B., Lu, J. G., & Fang, W. M. (2009). Analysis of expressed sequence tags (ESTs) collected from the inflorescence of chrysanthemum. Plant Molecular Biology Reporter, 27, 503–510.

    Article  CAS  Google Scholar 

  21. Zhang, L. J., & Fan, J. J. (2007). Plant physiology experiment course. Beijing: China Agricultural University Press.

    Google Scholar 

  22. Li, Z. L. (1996). Technology of plant production. Beijing: Peking University Press.

    Google Scholar 

  23. Sakamoto, W., Tamura, T., Hanba-Tomita, Y., & Murata, M. (2002). The VAR1 locus of Arabidopsis encodes a chloroplastic FtsH and is responsible for leaf variegation in the mutant alleles. Genes to Cells, 7, 769–780.

    Article  CAS  Google Scholar 

  24. Diatchenko, L., Lau, Y. F., Campbell, A. P., Chenchik, A., Moqadam, F., Huang, B., et al. (1996). Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proceedings of the National Academy of Sciences of the United States of America, 93, 6025–6030.

    Article  CAS  Google Scholar 

  25. Ramakers, C., Ruijter, J. M., Deprez, R. H. L., & Moorman, A. F. M. (2003). Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neuroscience Letters, 339, 62–66.

    Article  CAS  Google Scholar 

  26. Pfaffl, M. W. (2001). A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Research, 29, 2002–2007.

    Article  Google Scholar 

  27. Ohmiya, A., Kishimoto, S., Aida, R., Yoshioka, S., & Sumitomo, K. (2006). Carotenoid cleavage dioxygenase (CmCCD4a) contributes to white color formation in chrysanthemum petals. Plant Physiology, 142, 1193–1201.

    Article  CAS  Google Scholar 

  28. Zaltsman, A., Ori, N., & Adam, Z. (2005). Two types of FtsH protease subunits are required for chloroplast biogenesis and photosystem II repair in Arabidopsis. Plant Cell, 17, 2782–2790.

    Article  CAS  Google Scholar 

  29. Bossmann, B., Knoetzel, J., & Jansson, S. (1997). Screening of chlorina mutants of barley (Hordeum vulgare L.) with antibodies against light-harvesting proteins of PS I and PS II: absence of specific antenna proteins. Photosynthesis Research, 52, 127–136.

    Article  CAS  Google Scholar 

  30. Andersson, J., Wentworth, M., Walters, R. G., Howard, C. A., Ruban, A. V., Horton, P., et al. (2003). Absence of the Lhcb1 and Lhcb2 proteins of the light-harvesting complex of photosystem of the light-harvesting complex of photosystem II-effects on photosynthesis, grana stacking and fitness. Plant Journal, 35, 350–361.

    Article  CAS  Google Scholar 

  31. Jiang, C. Z., & Rodermel, S. R. (1995). Regulation of photosynthesis during leaf development in RbcS antisense DNA mutants of tobacco. Plant Physiology, 107, 215–224.

    CAS  Google Scholar 

  32. Schoefs, B., Darkoa, E., & Rodermel, S. (2001). Photosynthetic pigments, photosynthesis and plastid ultrastructure in RbcS antisense DNA mutants of tobacco (Nicotiana tabacum). Zeitschrift fuer Naturforschung, C Biosciences, 56, 1067–1074.

    CAS  Google Scholar 

  33. Ifuku, K., Yamamoto, Y., Ono, T., Ishihara, S., & Sato, F. (2005). PsbP protein, but not PsbQ protein, is essential for the regulation and stabilization of photosystem II in higher plants. Plant Physiology, 139, 1175–1184.

    Article  CAS  Google Scholar 

  34. Ihnatowicz, A., Pesaresi, P., Varotto, C., Richly, E., Schneider, A., Jahns, P., et al. (2004). Mutants for photosystem I subunit D of Arabidopsis thaliana: effects on photosynthesis, photosystem I stability and expression of nuclear genes for chloroplast functions. Plant Journal, 37, 839–852.

    Article  CAS  Google Scholar 

  35. Andersson, J., Walters, R. G., Horton, P., & Jansson, S. (2001). Antisense inhibition of the photosynthetic antenna proteins CP29 and CP26: implications for the mechanism of protective energy dissipation. Plant Cell, 13, 1193–1204.

    CAS  Google Scholar 

  36. Bellemare, G., Bartlett, S. G., & Chua, N. H. (1982). Biosynthesis of chlorophyll a/b-binding polypeptides in wild type and the chlorina f2 mutant of barley. Journal of Biological Chemistry, 257, 7762–7767.

    CAS  Google Scholar 

  37. Molik, S., Karnauchov, I., Weidlich, C., Herrmann, R. G., & Kl sgen, R. B. (2001). The rieske Fe/S protein of the cytochromeb 6/f complex in chloroplasts. Journal of Biological Chemistry, 276, 42761–42766.

    Article  CAS  Google Scholar 

  38. Shikanai, T. (2007). Cyclic electron transport around photosystem I: genetic approaches. Annual Review of Plant Biology, 58, 199–217.

    Article  CAS  Google Scholar 

  39. Outchkourov, N. S., Peters, J., De Jong, J., Rademakers, W., & Jongsma, M. A. (2003). The promoter-terminator of chrysanthemum rbcS1 directs very high expression levels in plants. Planta, 216, 1003–1012.

    CAS  Google Scholar 

  40. Campoli, C., Caffarri, S., Svensson, J. T., Bassi, R., Stanca, A. M., Cattivelli, L., et al. (2009). Parallel pigment and transcriptomic analysis of four barley Albina and Xantha mutants reveals the complex network of the chloroplast-dependent metabolism. Plant Molecular Biology, 71, 173–191.

    Article  CAS  Google Scholar 

  41. Leister, D. (2003). Chloroplast research in the genomic age. Trends in Genetics, 19, 47–56.

    Article  CAS  Google Scholar 

  42. Murray, D. L., & Kohorn, B. D. (1991). Chloroplasts of Arabidopsis thaliana homozygous for the ch-1 locus lack chlorophyll b, lack stable LHCPII and have stacked thylakoids. Plant Molecular Biology, 16, 71–79.

    Article  CAS  Google Scholar 

  43. Chekounova, E., Voronetskaya, V., Papenbrock, J., Grimm, B., & Beck, C. (2001). Characterization of Chlamydomonas mutants defective in the H subunit of Mg-chelatase. Molecular Genetics and Genomics, 266, 363–373.

    Article  CAS  Google Scholar 

  44. Crouzet, J., Levy-Schil, S., Cameron, B., Cauchois, L., Rigault, S., Rouyez, M. C., et al. (1991). Nucleotide sequence and genetic analysis of a 13.1-kilobase-pair Pseudomonas denitrificans DNA fragment containing five cob genes and identification of structural genes encoding Cob (I) alamin adenosyltransferase, cobyric acid synthase, and bifunctional cobinamide kinase-cobinamide phosphate guanylyltransferase. Journal of Bacteriology, 173, 6074–6087.

    CAS  Google Scholar 

  45. Nakayama, M., Masuda, T., Bando, T., Yamagata, H., Ohta, H., & Takamiya, K. (1998). Cloning and expression of the soybean chlH gene encoding a subunit of Mg-chelatase and localization of the Mg2+ concentration-dependent chlH protein within the chloroplast. Plant and Cell Physiology, 39, 275–284.

    Article  CAS  Google Scholar 

  46. Jensen, P. E., Petersen, B. L., Stummann, B. M., Henningsen, K. W., Willows, R. D., Vothknecht, U. C., et al. (1996). Structural genes for Mg-chelatase subunits in barley: xantha-f,-g and-h. Molecular and General Genetics, 250, 383–394.

    CAS  Google Scholar 

  47. Zhang, H. T., Li, J. J., Yoo, J. H., Yoo, S. C., Cho, S. H., Koh, H. J., et al. (2006). Rice Chlorina-1 and Chlorina-9 encode ChlD and ChlI subunits of Mg-chelatase, a key enzyme for chlorophyll synthesis and chloroplast development. Plant Molecular Biology, 62, 325–337.

    Article  CAS  Google Scholar 

  48. Chen, M., Choi, Y. D., Voytas, D. F., & Rodermel, S. (2000). Mutations in the Arabidopsis VAR2 locus cause leaf variegation due to the loss of a chloroplast FtsH protease. Plant Journal, 22, 303–313.

    Article  Google Scholar 

  49. Kakizaki, T., Matsumura, H., Nakayama, K., Che, F. S., Terauchi, R., & Inaba, T. (2009). Coordination of plastid protein import and nuclear gene expression by plastid-to-nucleus retrograde signaling. Plant Physiology, 151, 1339–1353.

    Article  CAS  Google Scholar 

  50. Von Wettstein, D., Gough, S., & Kannangara, C. G. (1995). Chlorophyll biosynthesis. Plant Cell, 7, 1039–1057.

    Google Scholar 

  51. Sundberg, E., Slagter, J. G., Fridborg, I., Cleary, S. P., Robinson, C., & Coupland, G. (1997). ALBIN03, an Arabidopsis nuclear gene essential for chloroplast differentiation, encodes a chloroplast protein that shows homology to proteins present in bacterial membranes and yeast mitochondria. Plant Cell, 9, 717–730.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 30872064, 31071820, 31071825), the Program for New Century Excellent Talents in University of Chinese Ministry of Education (Grant No. NCET-10-0492), Non-profit Industry Financial Program of the Ministry of Science and Technology of the People’s Republic of China (200903020) and the Fundamental Research Funds for the Central Universities (KYJ 200907, KYZ201112).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fadi Chen.

Additional information

Qingshan Chang and Sumei Chen contributed equally to this work reported here.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, Q., Chen, S., Chen, Y. et al. Anatomical and Physiological Differences and Differentially Expressed Genes Between the Green and Yellow Leaf Tissue in a Variegated Chrysanthemum Variety. Mol Biotechnol 54, 393–411 (2013). https://doi.org/10.1007/s12033-012-9578-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-012-9578-8

Keywords

Navigation