Skip to main content
Log in

Optimization of Protein Extraction from Hypericum perforatum Tissues and Immunoblotting Detection of Hyp-1 at Different Stages of Leaf Development

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Sample preparation is crucial for obtaining high-quality proteins for the purpose of electrophoretic separation and further analysis from tissues that contain high levels of interfering compounds. Hypericum perforatum is a medicinal plant that contains high amounts of phenolic compounds, of which hypericins, hyperforins, and flavonoids contribute to the antidepressant activities of the plant. This study focuses on obtaining optimized amounts of high-quality proteins from H. perforatum, which are suitable for electrophoretic analyses. From the tested protein extraction solutions, sodium borate buffers at pH 9 and 10 gave the best protein yields from mature H. perforatum leaves. With these buffers, relatively high protein yields could also be obtained from roots, stems, and flower buds. The protein extracts of all organs were well resolved in SDS-PAGE after an efficient removal of non-protein contaminants with PVPP, phenol extraction, and methanolic ammonium acetate precipitation. The method was suitable for high-quality protein extraction also from other tested species of genus Hypericum. The applicability of the protocol for immunoblotting was demonstrated by detecting Hyp-1 in H. perforatum leaves at different stages of development. Hyp-1, which has been suggested to attend to the biosynthesis of hypericin, accumulated in high amounts in H. perforatum leaves at mature stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

DTT:

Dithiothreitol

PR-10:

Pathogenesis-related class 10

PVDF:

Polyvinylidene difluoride

PVPP:

Polyvinylpolypyrrolidone

SDS-PAGE:

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis

TCA:

Trichloroacetic acid

References

  1. Rose, J. K. C., Bashir, S., Giovannoni, J. J., Jahn, M. M., & Saravanan, R. S. (2004). Tackling the plant proteome: Practical approaches, hurdles and experimental tools. The Plant Journal, 39, 715–733.

    Article  CAS  Google Scholar 

  2. Saravanan, R. S., & Rose, J. K. C. (2004). A critical evaluation of sample extraction techniques for enhanced proteomic analysis of recalcitrant plant tissues. Proteomics, 4, 2522–2532.

    Article  CAS  Google Scholar 

  3. Carpentier, S. C., Witters, E., Laukens, K., Deckers, P., Swennen, R., & Panis, B. (2005). Preparation of protein extracts from recalcitrant plant tissues: An evaluation of different methods for two-dimensional gel electrophoresis analysis. Proteomics, 5, 2497–2507.

    Article  CAS  Google Scholar 

  4. Butterweck, V. (2003). Mechanism of action of St John’s wort in depression: What is known? CNS Drugs, 17, 539–562.

    Article  CAS  Google Scholar 

  5. Wurglics, M., & Schubert-Zsilavecz, M. (2006). Hypericum perforatum: A ‘modern’ herbal antidepressant: Pharmacokinetics of active ingredients. Clinical Pharmacokinetics, 45, 449–468.

    Article  CAS  Google Scholar 

  6. Agostinis, P., Vantieghem, A., Merlevede, W., & de Witte, P. A. M. (2002). Hypericin in cancer treatment: More light on the way. The International Journal of Biochemistry & Cell Biology, 34, 221–241.

    Article  CAS  Google Scholar 

  7. Medina, M. A., Martínez-Poveda, B., Amores-Sánchez, M. I., & Quesada, A. R. (2006). Hyperforin: More than an antidepressant bioactive compound? Life Sciences, 79, 105–111.

    Article  CAS  Google Scholar 

  8. Nathan, P. J. (2001). Hypericum perforatum (St John’s Wort): A non-selective reuptake inhibitor? A review of the recent advances in its pharmacology. Journal of Psychopharmacology, 15, 47–54.

    Article  CAS  Google Scholar 

  9. Gómez-Vidal, S., Tena, M., Lopez-Llorca, L. V., & Salinas, J. (2008). Protein extraction from Phoenix dactylifera L. leaves, a recalcitrant material, for two-dimensional electrophoresis. Electrophoresis, 29, 448–456.

    Article  Google Scholar 

  10. Bais, H. P., Vepachedu, R., Lawrence, C. B., Stermitz, F. R., & Vivanco, J. M. (2003). Molecular and biochemical characterization of an enzyme responsible for the formation of hypericin in St. John’s wort (Hypericum perforatum L.). The Journal of Biological Chemistry, 278, 32413–32422.

    Article  CAS  Google Scholar 

  11. Michalska, K., Fernandes, H., Sikorski, M., & Jaskolski, M. (2010). Crystal structure of Hyp-1, a St. John’s wort protein implicated in the biosynthesis of hypericin. Journal of Structural Biology, 169, 161–171.

    Article  CAS  Google Scholar 

  12. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  13. Song, J., Braun, G., Bevis, E., & Doncaster, K. (2006). A simple protocol for protein extraction of recalcitrant fruit tissues suitable for 2-DE and MS analysis. Electrophoresis, 27, 3144–3151.

    Article  CAS  Google Scholar 

  14. Karppinen, K., & Hohtola, A. (2008). Molecular cloning and tissue-specific expression of two cDNAs encoding polyketide synthases from Hypericum perforatum. Journal of Plant Physiology, 165, 1079–1086.

    Article  CAS  Google Scholar 

  15. Wang, W., Scali, M., Vignani, R., Spadafora, A., Sensi, E., Mazzuca, S., et al. (2003). Protein extraction for two-dimensional electrophoresis from olive leaf, a plant tissue containing high levels of interfering compounds. Electrophoresis, 24, 2369–2375.

    Article  CAS  Google Scholar 

  16. Yao, Y., Yang, Y.-W., & Liu, J.-Y. (2006). An efficient protein preparation for proteomic analysis of developing cotton fibers by 2-DE. Electrophoresis, 27, 4559–4569.

    Article  CAS  Google Scholar 

  17. Vincent, D., Wheatley, M. D., & Cramer, G. R. (2006). Optimization of protein extraction and solubilization for mature grape berry clusters. Electrophoresis, 27, 1853–1865.

    Article  CAS  Google Scholar 

  18. Wang, W., Vignani, R., Scali, M., & Cresti, M. (2006). A universal and rapid protocol for protein extraction from recalcitrant plant tissues for proteomic analysis. Electrophoresis, 27, 2782–2786.

    Article  CAS  Google Scholar 

  19. Zheng, Q., Song, J., Doncaster, K., Rowland, E., & Byers, D. M. (2007). Qualitative and quantitative evaluation of protein extraction protocols for apple and strawberry fruit suitable for two-dimensional electrophoresis and mass spectrometry analysis. Journal of Agricultural and Food Chemistry, 55, 1663–1673.

    Article  CAS  Google Scholar 

  20. Fernandes, H., Konieczna, M., Kolodziejczyk, R., Bujacz, G., Sikorski, M., & Jaskolski, M. (2008). Crystallization and preliminary crystallographic studies of Hyp-1, a St John’s wort protein implicated in the biosynthesis of hypericin. Acta Crystallographica Section F, 64, 405–408.

    Article  Google Scholar 

  21. Košuth, J., Katkovčinová, Z., Olexová, P., & Čellárová, E. (2007). Expression of the hyp-1 gene in early stages of development of Hypericum perforatum L. Plant Cell Reports, 26, 211–217.

    Article  Google Scholar 

  22. Zobayed, S. M. A., Afreen, F., Goto, E., & Kozai, T. (2006). Plant–environment interactions: Accumulation of hypericin in dark glands of Hypericum perforatum. Annals of Botany, 98, 793–804.

    Article  CAS  Google Scholar 

  23. Liu, J.-J., & Ekramoddoullah, A. K. M. (2006). The family 10 of plant pathogenesis-related proteins: Their structure, regulation, and function in response to biotic and abiotic stresses. Physiological and Molecular Plant Pathology, 68, 3–13.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Prof. Dr. Eva Čellárová and Dr. Ján Košuth (Institute of Biology and Ecology, Faculty of Science, P. J. Šafárik University in Košice, Košice, Slovakia) for kindly providing the in vitro plants of different Hypericum species. This research was financially supported by grants from Finnish Cultural Foundation and Niemi Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katja Karppinen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karppinen, K., Taulavuori, E. & Hohtola, A. Optimization of Protein Extraction from Hypericum perforatum Tissues and Immunoblotting Detection of Hyp-1 at Different Stages of Leaf Development. Mol Biotechnol 46, 219–226 (2010). https://doi.org/10.1007/s12033-010-9299-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-010-9299-9

Keywords

Navigation