Skip to main content

Advertisement

Log in

Basic Principles of Fluorescence and Energy Transfer Applied to Real-Time PCR

  • Review
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Fluorescence is highly sensitive to environment, and the distance separating fluorophores and quencher molecules can provide the basis for effective homogeneous nucleic acid hybridization assays. Molecular interactions leading to fluorescence quenching include collisions, ground state and excited state complex formation, and long-range dipole-coupled energy transfer. These processes are well understood and equations are provided for estimating the effects of each process on fluorescence intensity. Estimates for the fluorescein-tetramethylrhodamine donor–acceptor pair reveal the relative contributions of dipole-coupled energy transfer, collisional quenching, and static quenching in several common assay formats, and illustrate that the degree of quenching is dependent upon the hybridization complex formed and the manner of label attachment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. This separation distance assumes the stem regions are included in the rigid helix. However, since the stem portions are not complementary to the target they would have some random coil nature and a somewhat smaller separation distance would result.

References

  1. Walsh, A., Rourke, F. O., & Laio, B. N. (2009). Evaluation of the Abbott RealTime™ CT assay with the BD ProbeTec™ ET assay for the detection of Chlamydia trachomatis in a clinical microbiology laboratory. Diagnostic Microbiology and Infectious Disease, 64, 13–19.

    Article  CAS  Google Scholar 

  2. Tang, N., Huang, S., Salituro, J., Mak, W.-B., Cloherty, G., Johanson, J., et al. (2007). A RealTime HIV-1 viral load assay for automated quantitation of HIV-1 RNA in genetically diverse group M subtypes A-H, group O and group N samples. Journal of Virological Methods, 146, 236–245.

    Article  CAS  Google Scholar 

  3. Sum, S. S.-M., Wong, D. K.-H., Yuen, M.-F., Yuan, H.-J., Yu, J., Lai, C.-L., et al. (2004). Real-time PCR assay using molecular beacon for quantitation of hepatitis B virus DNA. Journal of Clinical Microbiology, 42, 3438–3440.

    Article  CAS  Google Scholar 

  4. Liming, S. H., & Bhagwat, A. A. (2004). Application of a molecular beacon—real-time PCR technology to detect Salmonella species contaminating fruits and vegetables. International Journal of Food Microbiology, 95, 177–187.

    Article  CAS  Google Scholar 

  5. Clayton, S. J., Scot, F. M., Walker, J., Callaghan, K., Haque, K., Liloglou, T., et al. (2000). K-ras point mutation detection in lung cancer: comparison of two approaches to somatic mutation detection using ARMS allele-specific amplification. Clinical Chemistry, 46, 1929–1938.

    CAS  Google Scholar 

  6. Bernard, P. S., Ajioka, R. S., Kushner, J. P., & Wittwer, C. T. (1998). Homogeneous multiplex genotyping of hemochromatosis mutations with fluorescent hybridization probes. The American Journal of Pathology, 153, 1055–1061.

    CAS  Google Scholar 

  7. Emig, M., Saussele, S., Wittor, H., Weisser, A., Reiter, A., Willer, A., et al. (1999). Accurate and rapid analysis of residual disease in patients with CML using specific fluorescent hybridization probes for real time quantitative RT-PCR. Leukemia, 13, 1825–1832.

    Article  CAS  Google Scholar 

  8. Zhou, X. P., Waite, K. A., Pilarski, R., Hampel, H., Fernandez, M. J., Bos, C., et al. (2003). Germline PTEN promoter mutations and deletions in Cowden/Bannayan-Riley-Ruvalcaba syndrome result in aberrant PTEN protein dysregulation of the phosphoinositol-3-kinase/akt pathway. American Journal of Human Genetics, 73, 404–411.

    Article  CAS  Google Scholar 

  9. Takano, T., Ohe, Y., Sakamoto, H., Tsuta, K., Matsuno, Y., Tateishi, U., et al. (2005). Epidermal growth factor receptor gene mutations and increased copy numbers predict gefitinib sensitivity in patients with recurrent non-small-cell lung cancer. Journal of Clinical Oncology, 23, 6829–6837.

    Article  CAS  Google Scholar 

  10. Lakowicz, J. R. (1983). Principles of fluorescence spectroscopy. New York: Plenum Press.

    Google Scholar 

  11. Valeur, B. (2002). Molecular fluorescence: Principles and applications. Weinheim: Wiley-VCH.

    Google Scholar 

  12. Morrison, L. (1999). Homogeneous detection of specific DNA sequences by fluorescence quenching and energy transfer. Journal of Fluorescence, 9, 187–196.

    Article  CAS  Google Scholar 

  13. Morrison, L. E. (2003). Fluorescence in nucleic acid hybridization assays. In J. R. Lakowicz (Ed.), Topics in fluorescence spectroscopy (Vol. 7, pp. 69–97). New York: Kluwer.

    Chapter  Google Scholar 

  14. Ebata, K., Masuko, M., Ohtani, H., & Kashiwasake-Jibu, M. (1995). Nucleic acid hybridization accompanied with excimer formation from two pyrene-labeled probes. Photochemistry and Photobiology, 62, 836–839.

    Article  CAS  Google Scholar 

  15. Morrison, L. E. (1988). Time-resolved detection of energy transfer: Theory and application to immunoassays. Analytical Biochemistry, 174, 101–120.

    Article  CAS  Google Scholar 

  16. Lakowicz, J. R., & Weber, G. (1973). Quenching of fluorescence by oxygen. A probe for structural fluctuation in macromolecules. Biochemistry, 12, 4161–4170.

    Article  CAS  Google Scholar 

  17. Forster, T. (1959). Transfer mechanisms of electronic excitation. Discussions of the Faraday Society, 27, 7–17.

    Article  Google Scholar 

  18. Morrison, L. E., Halder, T. C., & Stols, L. M. (1989). Solution-phase detection of polynucleotides using interacting fluorescent labels and competitive hybridization. Analytical Biochemistry, 183, 231–244.

    Article  CAS  Google Scholar 

  19. Solinas, A., Brown, L. J., McKeen, C., Mellor, J. M., Nicol, J. T. G., Thelwell, N., et al. (2001). Duplex scorpion primers in SNP analysis and FRET applications. Nucleic Acids Research, 29, e96.

    Article  CAS  Google Scholar 

  20. Tyagi, S., & Kramer, F. R. (1996). Molecular beacons: Probes that fluoresce upon hybridization. Nature Biotechnology, 14, 303–308.

    Article  CAS  Google Scholar 

  21. Whitcombe, D., Theaker, J., Guy, S. P., Brown, T., & Little, S. (1999). Detection of PCR products using self-probing amplicons and fluorescence. Nature Biotechnology, 17, 804–807.

    Article  CAS  Google Scholar 

  22. Heller, M. J., & Morrison, L. E. (1985). Chemiluminescent and fluorescent probes for DNA hybridization systems. In D. T. Kingsbury & S. Falkow (Eds.), Rapid detection and identification of infectious agents (pp. 245–256). Orlando: Academic Press.

    Google Scholar 

  23. Wittwer, C. T., Herrmann, M. G., Moss, A. A., & Rasmussen, R. P. (1997). Continuous fluorescence monitoring of rapid cycle DNA amplification. Biotechniques, 22, 130–138.

    CAS  Google Scholar 

  24. Lee, L. G., Connell, C. R., & Bloch, W. (1993). Allelic discrimination by nick-translation PCR with fluorogenic probes. Nucleic Acids Research, 21, 3761–3766.

    Article  CAS  Google Scholar 

  25. Ishiguro, T., Saitoh, J., Yawata, H., Otsuka, M., Inoue, T., & Sugiura, Y. (1996). Fluorescence detection of specific sequence of nucleic acids by oxazole yellow-linked oligonucleotides. Homogeneous quantitative monitoring of in vitro transcription. Nucleic Acids Research, 24, 4992–4997.

    Article  CAS  Google Scholar 

  26. Abravaya, K., Huff, J., Marshall, R., Merchant, B., Mullen, C., Schneider, G., et al. (2003). Molecular beacons as diagnostic tools: Technology and applications. Clinical Chemistry and Laboratory Medicine, 41, 468–474.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Larry E. Morrison.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morrison, L.E. Basic Principles of Fluorescence and Energy Transfer Applied to Real-Time PCR. Mol Biotechnol 44, 168–176 (2010). https://doi.org/10.1007/s12033-009-9225-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-009-9225-1

Keywords

Navigation