Skip to main content

Advertisement

Log in

Phytochemical profiling, cytotoxic, anti-migration, and anti-angiogenic potential of phenolic-rich fraction from Peganum harmala: in vitro and in ovo studies

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Peganum harmala has been extensively employed in Algerian traditional medicine practices. This study aimed to explore the impact of n-butanol (n-BuOH) extract sourced from Peganum harmala seeds on cell proliferation, cell migration, and angiogenesis inhibition. Cytotoxic potential of n-BuOH extract was evaluated using MTT (3-(4,5-dimethylthiazol-2-yl) 2,5 diphenyltetrazolium bromide) assay against human breast adenocarcinoma MCF-7 cells, cell migration was determined using scratch assay, and anti-angiogenic effect was evaluated through macroscopic and histological examinations conducted on chick embryo chorioallantoic membrane. Additionally, this research estimated the phytochemical profile of n-BuOH extract. Fifteen phenolic compounds were identified using Ultra-performance liquid chromatography UPLC-ESI-MS-MS analysis. In addition, the n-BuOH extract of P. harmala exhibited potent antioxidant and free radical scavenging properties. The n-BuOH extract showed potent cytotoxicity against MCF-7 cell with an IC50 value of 8.68 ± 1.58 μg/mL. Furthermore, n-BuOH extract significantly reduced migration. A strong anti-angiogenic activity was observed in the groups treated with n-BuOH extract in comparison to the negative control. Histological analysis confirmed the anti-angiogenic effect of the n-BuOH extract. This activity is probably a result of the synergistic effects produced by different polyphenolic classes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data and material are contained within the article.

References

  1. Al-Ostoot FH, Salah S, Khamees HA, Khanum SA. Tumor angiogenesis: current challenges and therapeutic opportunities. Cancer Treat Res Commun. 2021;28:100422. https://doi.org/10.1016/j.ctarc.2021.100422.

    Article  PubMed  Google Scholar 

  2. Lugano R, Ramachandran M, Dimberg A. Tumor angiogenesis: causes, consequences, challenges and opportunities. Cell Mol Life Sci. 2020;77:1745–70. https://doi.org/10.1007/s00018-019-03351-7.

    Article  CAS  PubMed  Google Scholar 

  3. Tejerina-Miranda S, Pedrero M, Blázquez-García M, Serafín V, Montero-Calle A, Garranzo-Asensio M, et al. Angiogenesis inhibitor or aggressiveness marker? The function of endostatin in cancer through electrochemical biosensing. Bioelectrochemistry. 2024;155: 108571. https://doi.org/10.1016/j.bioelechem.2023.108571.

    Article  CAS  PubMed  Google Scholar 

  4. Yuan Y, Yuan R, Xin Q, Miao Y, Chen Y, Gao R, et al. Tetramethylpyrazine and paeoniflorin combination (TMP-PF) inhibits angiogenesis in atherosclerosis via miR-126/VEGF/VEGFR2 signaling pathway. J Future Foods. 2024;4:280–7. https://doi.org/10.1016/j.jfutfo.2023.07.010.

    Article  Google Scholar 

  5. Carmeliet P. VEGF as a key mediator of angiogenesis in cancer. Oncology. 2005. https://doi.org/10.1159/000088478.

    Article  PubMed  Google Scholar 

  6. Yuan R, Shi W, Xin Q, Yang B, Hoi MP, Lee SM, et al. Tetramethylpyrazine and paeoniflorin inhibit oxidized ldl-induced angiogenesis in human umbilical vein endothelial cells via VEGF and Notch pathways. Evid Based Complement Alternat Med. 2018;2018:e3082507. https://doi.org/10.1155/2018/3082507.

    Article  Google Scholar 

  7. Yang J. The role of reactive oxygen species in angiogenesis and preventing tissue injury after brain ischemia. Microvasc Res. 2019;123:62–7. https://doi.org/10.1016/j.mvr.2018.12.005.

    Article  CAS  PubMed  Google Scholar 

  8. Ghalehbandi S, Yuzugulen J, Pranjol MZI, Pourgholami MH. The role of VEGF in cancer-induced angiogenesis and research progress of drugs targeting VEGF. Eur J Pharmacol. 2023;949:175586. https://doi.org/10.1016/j.ejphar.2023.175586.

    Article  CAS  PubMed  Google Scholar 

  9. Kozak J, Jonak K. Association between the antioxidant properties of SESN proteins and anti-cancer therapies. Amino Acids. 2023;55:835–51. https://doi.org/10.1007/s00726-023-03281-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Roy A, Khan A, Ahmad I, Alghamdi S, Rajab BS, Babalghith AO, et al. Flavonoids a bioactive compound from medicinal plants and its therapeutic applications. BioMed Res Int. 2022;2022:5445291. https://doi.org/10.1155/2022/5445291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dehiri M, Diafat A, Fatmi W, Bouaziz F, Khalil R, Bahloul A. Toxicity evaluation of algerian Peganum harmala seed hydromethanolic extract. Toxicol Environ Health Sci. 2022;14:351–9. https://doi.org/10.1007/s13530-022-00149-2.

    Article  Google Scholar 

  12. Bournine L, Bensalem S, Fatmi S, Bedjou F, Mathieu V, Iguer-Ouada M, et al. Evaluation of the cytotoxic and cytostatic activities of alkaloid extracts from different parts of Peganum harmala L. (Zygophyllaceae). Eur J Integr Med. 2017;9:91–6. https://doi.org/10.1016/j.eujim.2016.10.002.

    Article  Google Scholar 

  13. Adeel S, Anjum F, Zuber M, Hussaan M, Amin N, Ozomay M. Sustainable extraction of colourant from harmal seeds (Peganum harmala) for dyeing of bio-mordanted wool fabric. Sustainability. 2022;14:12226. https://doi.org/10.3390/su141912226.

    Article  CAS  Google Scholar 

  14. Azzazy HME-S, Sawy AM, Abdelnaser A, Meselhy MR, Shoeib T, Fahmy SA. Peganum harmala alkaloids and tannic acid encapsulated in PAMAM dendrimers: improved anticancer activities as compared to doxorubicin. ACS Appl Polym Mater. 2022;4:7228–39.

    Article  CAS  Google Scholar 

  15. Gökkaya İ, Renda G, Subaş T, Özgen U. Phytochemical, pharmacological, and toxicological studies on Peganum harmala L.: an overview of the last decade. Clin Exp Health Sci. 2023. https://doi.org/10.33808/clinexphealthsci.1125345.

    Article  Google Scholar 

  16. Rashid S, Sameti M, Alqarni MH, Abdel Bar FM. In vivo investigation of the inhibitory effect of Peganum harmala L. and its major alkaloids on ethylene glycol-induced urolithiasis in rats. J Ethnopharmacol. 2023;300:115752. https://doi.org/10.1016/j.jep.2022.115752.

    Article  CAS  PubMed  Google Scholar 

  17. Saeedeh F, Oryan S, Ahmadi R, Eidi A. Evaluation of chemical components, anti-oxidant properties, and lethal toxicity of alkaloids extracted from espand (Peganum harmala). J Appl Biol Sci. 2022;16:257–65.

    Google Scholar 

  18. Quezel P, Santa S. Nouvelle flore de l’Algerie : et des regions desertiques meridionales | Wageningen University and Research Library catalog. Paris: CNRS; 1962.

    Google Scholar 

  19. Sfaksi N, Bottone A, Masullo M, Bicha S, Piacente S, Benayache S, et al. Phytochemical investigation of Volutaria lippii and evaluation of the antioxidant activity. Nat Prod Res. 2022. https://doi.org/10.1080/14786419.2022.2138873.

    Article  PubMed  Google Scholar 

  20. Singleton VL, Rossi JA. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic. 1965;16:144–58. https://doi.org/10.5344/ajev.1965.16.3.144.

    Article  CAS  Google Scholar 

  21. Bahorun T, Gressier B, Trotin F, Brunet C, Dine T, Luyckx M, et al. Oxygen species scavenging activity of phenolic extracts from hawthorn fresh plant organs and pharmaceutical preparations. Arzneimittelforschung. 1996;46:1086–9.

    CAS  PubMed  Google Scholar 

  22. Koleva II, van Beek TA, Linssen JPH, de Groot A, Evstatieva LN. Screening of plant extracts for antioxidant activity: a comparative study on three testing methods. Phytochem Anal PCA. 2002;13:8–17. https://doi.org/10.1002/pca.611.

    Article  CAS  PubMed  Google Scholar 

  23. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med. 1999;26:1231–7. https://doi.org/10.1016/s0891-5849(98)00315-3.

    Article  CAS  PubMed  Google Scholar 

  24. Oyaizu M. Studies on products of browning reaction. Jpn J Nutr Diet. 1986;44:307–15. https://doi.org/10.5264/eiyogakuzashi.44.307.

    Article  CAS  Google Scholar 

  25. Cacan E, Ozmen ZC. Regulation of Fas in response to bortezomib and epirubicin in colorectal cancer cells. J Chemother. 2020;32:193–201. https://doi.org/10.1080/1120009X.2020.1740389.

    Article  CAS  PubMed  Google Scholar 

  26. Gülmez Y, Aydın A, Can İ, Tekin Ş, Cacan E. Cellular toxicity and biological activities of honey bee (Apis mellifera L.) venom. Marmara Pharm J. 2017. https://doi.org/10.12991/marupj.300329.

    Article  Google Scholar 

  27. Smeriglio A, Denaro M, Barreca D, D’Angelo V, Germanò MP, Trombetta D. Polyphenolic profile and biological activities of black carrot crude extract (Daucus carota L. ssp. sativus var. atrorubens Alef.). Fitoterapia. 2018;124:49–57. https://doi.org/10.1016/j.fitote.2017.10.006.

    Article  CAS  PubMed  Google Scholar 

  28. Pratheeshkumar P, Budhraja A, Son YO, Wang X, Zhang Z, Ding S, et al. Quercetin inhibits angiogenesis mediated human prostate tumor growth by targeting VEGFR-2 regulated AKT/mTOR/P70S6K signaling pathways. PLoS ONE. 2012;7:e47516. https://doi.org/10.1371/journal.pone.0047516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Drabkin DL, Austin JH. Spectrophotometric studies: I. Spectrophotometric constants for common hemoglobin derivatives in human, dog, and rabbit blood. J Biol Chem. 1932;98:719–33.

    Article  CAS  Google Scholar 

  30. Sodaeizadeh HHJ, Van Damme P. Role of phenolic compounds release by Peganum harmala L. on germination and growth suppression of Convolvulus arvensis L. Planta Med. 2009. https://doi.org/10.1055/s-0029-1234344.

    Article  Google Scholar 

  31. Elansary HO, Szopa A, Kubica P, Ekiert H, Al-Mana FA, El-Shafei AA. Polyphenols of Frangula alnus and Peganum harmala leaves and associated biological activities. Plants. 2020;9:1086. https://doi.org/10.3390/plants9091086.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mounira D, Abdelouahab D, Widad F, Amirouche D, Mansour RB, Rebai K, et al. Acute and chronic toxicity, antioxidant (in vitro and in vivo), and cytotoxic effect of Peganum harmala l. hydromethanolic seeds extract safety profile and biological activities of Peganum harmala. Res Sq. 2021. https://doi.org/10.21203/rs.3.rs-982660/v1.

    Article  Google Scholar 

  33. Blois MS. Antioxidant determinations by the use of a stable free radical. Nature. 1958;181:1199–200. https://doi.org/10.1038/1811199a0.

    Article  CAS  Google Scholar 

  34. Mathew S, Abraham TE, Zakaria ZA. Reactivity of phenolic compounds towards free radicals under in vitro conditions. J Food Sci Technol. 2015;52:5790–8. https://doi.org/10.1007/s13197-014-1704-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Alam MZ, Alhebsi MSR, Ghnimi S, Kamal-Eldin A. Inability of total antioxidant activity assays to accurately assess the phenolic compounds of date palm fruit (Phoenix dactylifera L.). NFS J. 2021;22:32–40. https://doi.org/10.1016/j.nfs.2021.01.001.

    Article  CAS  Google Scholar 

  36. Platzer M, Kiese S, Tybussek T, Herfellner T, Schneider F, Schweiggert-Weisz U, et al. Radical scavenging mechanisms of phenolic compounds: a quantitative structure-property relationship (QSPR) study. Front Nutr. 2022. https://doi.org/10.3389/fnut.2022.882458.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Shi L, Zhao W, Yang Z, Subbiah V, Suleria HAR. Extraction and characterization of phenolic compounds and their potential antioxidant activities. Environ Sci Pollut Res. 2022;29:81112–29. https://doi.org/10.1007/s11356-022-23337-6.

    Article  CAS  Google Scholar 

  38. Dudonné S, Vitrac X, Coutière P, Woillez M, Mérillon JM. Comparative study of antioxidant properties and total phenolic content of 30 plant extracts of industrial interest using DPPH, ABTS, FRAP, SOD, and ORAC assays. J Agric Food Chem. 2009;57:1768–74. https://doi.org/10.1021/jf803011r.

    Article  CAS  PubMed  Google Scholar 

  39. Sudan R, Bhagat M, Gupta S, Singh J, Koul A. Iron (FeII) chelation, ferric reducing antioxidant power, and immune modulating potential of arisaema jacquemontii (Himalayan cobra lily). BioMed Res Int. 2014;2014:179865. https://doi.org/10.1155/2014/179865.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Ribatti D, Gualandris A, Bastaki M, Vacca A, Iurlaro M, Roncali L, et al. New model for the study of angiogenesis and antiangiogenesis in the chick embryo chorioallantoic membrane: the gelatin sponge/chorioallantoic membrane assay. J Vasc Res. 1997;34:455–63. https://doi.org/10.1159/000159256.

    Article  CAS  PubMed  Google Scholar 

  41. Ribatti D, Nico B, Vacca A, Presta M. The gelatin sponge-chorioallantoic membrane assay. Nat Protoc. 2006;1:85–91. https://doi.org/10.1038/nprot.2006.13.

    Article  CAS  PubMed  Google Scholar 

  42. Ribatti D. Two new applications in the study of angiogenesis the CAM assay: Acellular scaffolds and organoids. Microvasc Res. 2022;140:104304. https://doi.org/10.1016/j.mvr.2021.104304.

    Article  CAS  PubMed  Google Scholar 

  43. Miura K, Koyanagi-Aoi M, Maniwa Y, Aoi T. Chorioallantoic membrane assay revealed the role of TIPARP (2,3,7,8-tetrachlorodibenzo-p-dioxin-inducible poly (ADP-ribose) polymerase) in lung adenocarcinoma-induced angiogenesis. Cancer Cell Int. 2023;23:34. https://doi.org/10.1186/s12935-023-02870-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Huang YJ, Nan GX. Oxidative stress-induced angiogenesis. J Clin Neurosci. 2019;63:13–6. https://doi.org/10.1016/j.jocn.2019.02.019.

    Article  CAS  PubMed  Google Scholar 

  45. Emami MH, Sereshki N, Malakoutikhah Z, Dehkordi SAE, Fahim A, Mohammadzadeh S, et al. Nrf2 signaling pathway in trace metal carcinogenesis: a cross-talk between oxidative stress and angiogenesis. Comp Biochem Physiol Part C Toxicol Pharmacol. 2022;254:109266. https://doi.org/10.1016/j.cbpc.2022.109266.

    Article  CAS  Google Scholar 

  46. Facciabene A, Peng X, Hagemann IS, Balint K, Barchetti A, Wang LP, et al. Tumour hypoxia promotes tolerance and angiogenesis via CCL28 and Treg cells. Nature. 2011;475:226–30. https://doi.org/10.1038/nature10169.

    Article  CAS  PubMed  Google Scholar 

  47. Li F, Bai Y, Zhao M, Huang L, Li S, Li X, et al. Quercetin inhibits vascular endothelial growth factor-induced choroidal and retinal angiogenesis in vitro. Ophthalmic Res. 2015;53:109–16. https://doi.org/10.1159/000369824.

    Article  CAS  PubMed  Google Scholar 

  48. Ghafouri-Fard S, Shoorei H, Khanbabapour Sasi A, Taheri M, Ayatollahi SA. The impact of the phytotherapeutic agent quercetin on expression of genes and activity of signaling pathways. Biomed Pharmacother. 2021;141:111847. https://doi.org/10.1016/j.biopha.2021.111847.

    Article  CAS  PubMed  Google Scholar 

  49. Chin HK, Horng CT, Liu YS, Lu CC, Su CY, Chen PS, et al. Kaempferol inhibits angiogenic ability by targeting VEGF receptor-2 and downregulating the PI3K/AKT, MEK and ERK pathways in VEGF-stimulated human umbilical vein endothelial cells. Oncol Rep. 2018;39:2351–7. https://doi.org/10.3892/or.2018.6312.

    Article  CAS  PubMed  Google Scholar 

  50. Gastaldello GH, Cazeloto ACV, Ferreira JC, Rodrigues DM, Bastos JK, Campo VL, et al. Green propolis compounds (baccharin and p-Coumaric Acid) show beneficial effects in mice for melanoma induced by B16f10. Medicines. 2021;8:20. https://doi.org/10.3390/medicines8050020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Santhosh Kumar YCT. Anti-angiogenic activity of nano naringenin on chick chorioallantoic membrane model. J Pharm Negat Results. 2022. https://doi.org/10.47750/pnr.2022.13.S07.508.

    Article  Google Scholar 

Download references

Acknowledgements

Authors are grateful to the General Directorate for Scientific Research and Technological Development (DGRSDT) of the Algerian Ministry of Higher Education and Scientific Research for the financial support.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

HK performed the experiments, analyzed, interpreted the data, and wrote the main manuscript text. LB supervised all the work, designed and co-performed the experiments (phytochemical and CAM experiments), and then revised the manuscript. DB designed and co-performed CAM experiments. SM co-performed MTT and scratch assay. EC evaluated MTT and scratch assay. MS evaluated experiments and revised the manuscript. All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Hadjer Kemel.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 82 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kemel, H., Benguedouar, L., Boudjerda, D. et al. Phytochemical profiling, cytotoxic, anti-migration, and anti-angiogenic potential of phenolic-rich fraction from Peganum harmala: in vitro and in ovo studies. Med Oncol 41, 144 (2024). https://doi.org/10.1007/s12032-024-02396-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-024-02396-4

Keywords

Navigation