Skip to main content

Advertisement

Log in

A novel cross-communication of HIF-1α and HIF-2α with Wnt signaling in TNBC and influence of hypoxic microenvironment in the formation of an organ-on-chip model of breast cancer

  • Review Article
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

The microenvironment role is very important in cancer development. The epithelial–mesenchymal transition of the cancer cells depends upon specific signaling and microenvironmental conditions, such as hypoxic conditions. The crosstalk between hypoxia and Wnt signaling through some molecular mechanism in TNBC is related. Cross-communication between hypoxia and Wnt signaling in cancer cells is known, but the detailed mechanism in TNBC is unknown. This review includes the role of the hypoxia microenvironment in TNBC and the novel crosstalk of the Wnt signaling and hypoxia. When targeted, the new pathway and crosstalk link may be a solution for metastatic TNBC and chemoresistance. The microenvironment influences cancer’s metastasis, which changes from person to person. Therefore, organ-on-a-chip is a very novel model to test the drugs clinically before going for human trials, focusing on personalized medications can be done. The effect of the hypoxia microenvironment on breast cancer stem cells is still unknown. Apart from all the published papers, this paper mainly focuses only on the hypoxic microenvironment and its association with the growth of TNBC. The medicines or small proteins, drugs, mimics, and inhibitors targeting wnt and hypoxia genes are consolidated in this review paper.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Egeblad M, Nakasone ES, Werb Z. Tumors as organs: complex tissues that interface with the entire organism. Dev Cell. 2010;18:884–901 (cited 18 July 2022). https://pubmed.ncbi.nlm.nih.gov/20627072/.

  2. Malla RR, Deepak KGK, Merchant N, Dasari VR. Breast Tumor Microenvironment: emerging target of therapeutic phytochemicals. Phytomedicine. 2020;70: 153227 (cited 14 July 2023). https://pubmed.ncbi.nlm.nih.gov/32339885/.

  3. Rianna C, Kumar P, Radmacher M. The role of the microenvironment in the biophysics of cancer. Semin Cell Dev Biol. 2018;73:107–14 (cited 14 July 2023). https://pubmed.ncbi.nlm.nih.gov/28746843/

  4. Anastasiou D. Tumour microenvironment factors shaping the cancer metabolism landscape. Br J Cancer. 2017;116:277–86 (cited 18 July 2022). https://pubmed.ncbi.nlm.nih.gov/28006817/.

  5. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100:57–70 (cited 18 July 2022). https://pubmed.ncbi.nlm.nih.gov/10647931/.

  6. Pickup MW, Mouw JK, Weaver VM. The extracellular matrix modulates the hallmarks of cancer. EMBO Rep. 2014;15:1243–53 (cited 18 July 2022). https://pubmed.ncbi.nlm.nih.gov/25381661/.

  7. Lu P, Weaver VM, Werb Z. The extracellular matrix: a dynamic niche in cancer progression. J Cell Biol. 2012;196:395–406 (cited 18 July 2022). https://pubmed.ncbi.nlm.nih.gov/22351925/.

  8. Wells RG. The role of matrix stiffness in regulating cell behavior. Hepatology. 2008;47:1394–400. https://doi.org/10.1002/hep.22193. (cited 19 July 2022).

    Article  CAS  PubMed  Google Scholar 

  9. Discher DE, Janmey P, Wang YL. Tissue cells feel and respond to the stiffness of their substrate. Science. 2005;310:1139–43 (cited 19 July 2022). https://pubmed.ncbi.nlm.nih.gov/16293750/.

  10. Bonnans C, Chou J, Werb Z. Remodelling the extracellular matrix in development and disease. Nat Rev Mol Cell Biol. 2014;15:786–801 (cited 19 July 2022). https://pubmed.ncbi.nlm.nih.gov/25415508/.

  11. Giussani M, Merlino G, Cappelletti V, Tagliabue E, Daidone MG. Tumor-extracellular matrix interactions: identification of tools associated with breast cancer progression. Semin Cancer Biol. 2015;35:3–10 (14 July 2023). https://pubmed.ncbi.nlm.nih.gov/26416466/.

  12. Nelson MT, Short A, Cole SL, Gross AC, Winter J, Eubank TD, et al. Preferential, enhanced breast cancer cell migration on biomimetic electrospun nanofiber “cell highways.” BMC Cancer. 2014;14:825 (14 july 2023). https://link.springer.com/article/10.1186/1471-2407-14-825.

  13. Provenzano PP, Eliceiri KW, Campbell JM, Inman DR, White JG, Keely PJ. Collagen reorganization at the tumor–stromal interface facilitates local invasion. BMC Med. 2006;4:1–15. https://doi.org/10.1186/1741-7015-4-38. (cited 19 July 2022).

    Article  CAS  Google Scholar 

  14. Lu P, Weaver VM, Werb Z. The extracellular matrix: a dynamic niche in cancer progression. J Cell Biol. 2012;196:395–406 (cited 19 July 2022). https://pubmed.ncbi.nlm.nih.gov/22351925/.

  15. Stewart DA, Cooper CR, Sikes RA. Changes in extracellular matrix (ECM) and ECM-associated proteins in the metastatic progression of prostate cancer. Reprod Biol Endocrinol. 2004;2 (cited 19 July 2022). https://pubmed.ncbi.nlm.nih.gov/14711377/.

  16. Yan Y, He M, Zhao L, Wu H, Zhao Y, Han L, et al. A novel HIF-2α targeted inhibitor suppresses hypoxia-induced breast cancer stemness via SOD2-mtROS-PDI/GPR78-UPRER axis. Cell Death Differ. 2022;29 (cited 9 Oct 2022). https://pubmed.ncbi.nlm.nih.gov/35301432/.

  17. Tang K, Zhu L, Chen J, Wang D, Zeng L, Chen C, et al. Hypoxia promotes breast cancer cell growth by activating a glycogen metabolic program. Cancer Res. 2021;81:4949–63 (cited 20 July 2022). https://aacrjournals.org/cancerres/article/81/19/4949/670316/Hypoxia-Promotes-Breast-Cancer-Cell-Growth-by.

  18. McDonald PC, Dedhar S. Carbonic anhydrase IX (CAIX) as a mediator of hypoxia-induced stress response in cancer cells. Subcell Biochem. 2014;75:255–69 (cited 13 Oct 2022). https://pubmed.ncbi.nlm.nih.gov/24146383/.

  19. McAleese CE, Choudhury C, Butcher NJ, Minchin RF. Hypoxia-mediated drug resistance in breast cancers. Cancer Lett. 2021;502:189–99 (cited 8 Oct 2022). https://pubmed.ncbi.nlm.nih.gov/33278499/.

  20. Saatci O, Kaymak A, Raza U, Ersan PG, Akbulut O, Banister CE, et al. Targeting lysyl oxidase (LOX) overcomes chemotherapy resistance in triple negative breast cancer. Nat Commun. 2020;11 (cited 8 Oct 2022). https://pubmed.ncbi.nlm.nih.gov/32415208/.

  21. Xie J, Xiao Y, Zhu X, Ning Z, Xu H, Wu H. Hypoxia regulates stemness of breast cancer MDA-MB-231 cells. Med Oncol. 2016;33 (cited 9 Oct 2022). https://pubmed.ncbi.nlm.nih.gov/27038472/.

  22. Wu H, Chu Y, Sun S, Li G, Xu S, Zhang X, et al. Hypoxia-mediated complement 1q binding protein regulates metastasis and chemoresistance in triple-negative breast cancer and modulates the PKC-NF-κB-VCAM-1 signaling pathway. Front Cell Dev Biol. 2021;9 (cited 18 Sep 2022). https://pubmed.ncbi.nlm.nih.gov/33708767/.

  23. Khan S, Jutzy JMS, Aspe JR, McGregor DW, Neidigh JW, Wall NR. Survivin is released from cancer cells via exosomes. Apoptosis. 2011;16:1–12 (cited 27 June 2022). https://pubmed.ncbi.nlm.nih.gov/20717727/.

  24. Greville G, Llop E, Huang C, Creagh-Flynn J, Pfister S, O’Flaherty R, et al. Hypoxia alters epigenetic and N-glycosylation profiles of ovarian and breast cancer cell lines in vitro. Front Oncol. 2020;10 (cited 9 Oct 2022). https://pubmed.ncbi.nlm.nih.gov/32850359/.

  25. Doktorova H, Hrabeta J, Khalil MA, Eckschlager T. Hypoxia-induced chemoresistance in cancer cells: the role of not only HIF-1. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2015;159:166–77 (cited 13 Oct 2022). https://pubmed.ncbi.nlm.nih.gov/26001024/

  26. Zhang J, Zhang J, Xu S, Zhang X, Wang P, Wu H, et al. Hypoxia-induced TPM2 methylation is associated with chemoresistance and poor prognosis in breast cancer. Cell Physiol Biochem. 2018;45:692–705 (cited 9 Oct 2022). https://pubmed.ncbi.nlm.nih.gov/29414807/.

  27. Dorayappan KDP, Wanner R, Wallbillich JJ, Saini U, Zingarelli R, Suarez AA, et al. Hypoxia-induced exosomes contribute to a more aggressive and chemoresistant ovarian cancer phenotype: a novel mechanism linking STAT3/Rab proteins. Oncogene. 2018;37:3806–21 (cited 8 Oct 2022). https://pubmed.ncbi.nlm.nih.gov/29636548/.

  28. Xiong G, Stewart RL, Chen J, Gao T, Scott TL, Samayoa LM, et al. Collagen prolyl 4-hydroxylase 1 is essential for HIF-1α stabilization and TNBC chemoresistance. Nat Commun. 2018;9 (cited 9 Oct 2022). https://pubmed.ncbi.nlm.nih.gov/30367042/.

  29. Xiao F, Jia H, Wu D, Zhang Z, Li S, Guo J. LINC01234 aggravates cell growth and migration of triple-negative breast cancer by activating the Wnt pathway. Environ Toxicol. 2021;36:1999–2012 (cited 14 Oct 2022). https://pubmed.ncbi.nlm.nih.gov/34173712/.

  30. Li Z, Yang HY, Zhang XL, Zhang X, Huang YZ, Dai XY, et al. Kinesin family member 23, regulated by FOXM1, promotes triple negative breast cancer progression via activating Wnt/β-catenin pathway. J Exp Clin Cancer Res. 2022;41(1):168 (cited 14 Oct 2022). https://pubmed.ncbi.nlm.nih.gov/35524313/.

  31. Zhu Y, Shen T, Liu J, Zheng J, Zhang Y, Xu R, et al. Rab35 is required for Wnt5a/Dvl2-induced Rac1 activation and cell migration in MCF-7 breast cancer cells. Cell Signal. 2013;25:1075–85 (cited 14 Oct 2022). https://pubmed.ncbi.nlm.nih.gov/23353182/.

  32. Yin P, Wang W, Gao J, Bai Y, Wang Z, Na L, et al. Fzd2 contributes to breast cancer cell mesenchymal-like stemness and drug resistance. Oncol Res. 2020;28:273–84 (cited 9 Oct 2022). https://pubmed.ncbi.nlm.nih.gov/31907106/.

  33. Hung TH, Hsu SC, Cheng CY, Choo KB, Tseng CP, Chen TC, et al. Wnt5A regulates ABCB1 expression in multidrug-resistant cancer cells through activation of the non-canonical PKA/β-catenin pathway. Oncotarget. 2014;5:12273–90 (cited 13 Oct 2022). https://pubmed.ncbi.nlm.nih.gov/25401518/.

  34. Li Y, Wang Z, Su P, Liang Y, Li Z, Zhang H, et al. circ-EIF6 encodes EIF6-224aa to promote TNBC progression via stabilizing MYH9 and activating the Wnt/beta-catenin pathway. Mol Ther. 2022;30:415–30 (cited 9 Oct 2022). https://pubmed.ncbi.nlm.nih.gov/34450253/.

  35. Zou Y, Lin X, Bu J, Lin Z, Chen Y, Qiu Y, et al. Timeless-stimulated miR-5188-FOXO1/β-catenin-c-Jun feedback loop promotes stemness via ubiquitination of β-catenin in breast cancer. Mol Ther. 2020;28:313–27 (cited 9 Oct 2022). https://pubmed.ncbi.nlm.nih.gov/31604679/.

  36. Mukherjee N, Panda CK. Wnt/β-catenin signaling pathway as chemotherapeutic target in breast cancer: an update on pros and cons. Clin Breast Cancer. 2020;20:361–70. https://doi.org/10.1016/j.clbc.2020.04.004.

    Article  CAS  PubMed  Google Scholar 

  37. Molnar J, Somberg JC. The clinical pharmacology of ethacrynic acid. Am J Ther. 2009;16:86–92 (cited 29 June 2023). https://pubmed.ncbi.nlm.nih.gov/19142159/.

  38. Ren Y, Tao J, Jiang Z, Guo D, Tang J. Pimozide suppresses colorectal cancer via inhibition of Wnt/β-catenin signaling pathway. Life Sci. 2018;209:267–73 (cited 29 June 2023). https://pubmed.ncbi.nlm.nih.gov/30107167/.

  39. Steinbach G, Lynch PM, Phillips RKS, Wallace MH, Hawk E, Gordon GB, et al. The effect of celecoxib, a cyclooxygenase-2 inhibitor, in familial adenomatous polyposis. N Engl J Med. 2000;342:1946–52 (cited 29 June 2023). https://pubmed.ncbi.nlm.nih.gov/10874062/.

  40. Xu L, Zhang L, Hu C, Liang S, Fei X, Yan N, et al. WNT pathway inhibitor pyrvinium pamoate inhibits the self-renewal and metastasis of breast cancer stem cells. Int J Oncol. 2016;48:1175–86 (cited 29 June 2023). https://pubmed.ncbi.nlm.nih.gov/26781188/.

  41. Labayle D, Fischer D, Vielh P, Drouhin F, Pariente A, Bories C, et al. Sulindac causes regression of rectal polyps in familial adenomatous polyposis. Gastroenterology. 1991;101:635–9 (cited 29 June 2023). https://pubmed.ncbi.nlm.nih.gov/1650315/.

  42. Arend RC, Londoño-Joshi AI, Straughn JM, Buchsbaum DJ. The Wnt/β-catenin pathway in ovarian cancer: a review. Gynecol Oncol. 2013;131:772–9 (cited 29 June 2023). https://pubmed.ncbi.nlm.nih.gov/24125749/.

  43. Yin S, Xu L, Bonfil RD, Banerjee S, Sarkar FH, Sethi S, et al. Tumor-initiating cells and FZD8 play a major role in drug resistance in triple-negative breast cancer. Mol Cancer Ther. 2013;12:491–8 (cited 9 Oct 2022). https://pubmed.ncbi.nlm.nih.gov/23445611/.

  44. Guan X, He Y, Wei Z, Shi C, Li Y, Zhao R, et al. Crosstalk between Wnt/β-catenin signaling and NF-κB signaling contributes to apical periodontitis. Int Immunopharmacol. 2021;98 (cited 13 Oct 2022). https://pubmed.ncbi.nlm.nih.gov/34153668/.

  45. Liu S, Wang Z, Liu Z, Shi S, Zhang Z, Zhang J, et al. miR-221/222 activate the Wnt/β-catenin signaling to promote triple-negative breast cancer. J Mol Cell Biol. 2018;10:302–15 (cited 2 Sep 2021). https://pubmed.ncbi.nlm.nih.gov/30053090/.

  46. Zheng Q, Yao D, Cai Y, Zhou T. NLRP3 augmented resistance to gemcitabine in triple-negative breast cancer cells via EMT/IL-1β/Wnt/β-catenin signaling pathway. Biosci Rep. 2020;40(7):BSR20200730 (cited 14 Oct 2022). https://pubmed.ncbi.nlm.nih.gov/32578856/.

  47. Li S, Wu H, Huang X, Jian Y, Kong L, Xu H, et al. BOP1 confers chemoresistance of triple-negative breast cancer by promoting CBP-mediated β-catenin acetylation. J Pathol. 2021;254:265–78 (cited 9 Oct 2022). https://pubmed.ncbi.nlm.nih.gov/33797754/.

  48. Chen Y, Wu N, Liu L, Dong H, Liu X. microRNA-128-3p overexpression inhibits breast cancer stem cell characteristics through suppression of Wnt signalling pathway by down-regulating NEK2. J Cell Mol Med. 2020;24:7353–69 (cited 13 Oct 2022). https://pubmed.ncbi.nlm.nih.gov/32558224/.

  49. Martin TA, Goyal A, Watkins G, Jiang WG. Expression of the transcription factors snail, slug, and twist and their clinical significance in human breast cancer. Ann Surg Oncol. 2005;12:488–96 (cited 14 Oct 2022). https://pubmed.ncbi.nlm.nih.gov/15864483/.

  50. Reinhold MI, Kapadia RM, Liao Z, Naski MC. The Wnt-inducible transcription factor Twist1 inhibits chondrogenesis. J Biol Chem. 2006;281:1381–8 (cited 14 Oct 2022). https://pubmed.ncbi.nlm.nih.gov/16293629/.

  51. Xie J, Xiao Y, Zhu X, Ning Z, Xu H, Wu H. Hypoxia regulates stemness of breast cancer MDA-MB-231 cells. Med Oncol. 2016;33(5):42. https://pubmed.ncbi.nlm.nih.gov/27038472/.

  52. Chen S, Chen J, Zhang J, Chen H, Yan M, Huang L, et al. Hypoxia induces TWIST-activated epithelial–mesenchymal transition and proliferation of pancreatic cancer cells in vitro and in nude mice. Cancer Lett. 2016;383:73–84. https://pubmed.ncbi.nlm.nih.gov/27693633/.

  53. Yang MH, Wu MZ, Chiou SH, Chen PM, Chang SY, Liu CJ, et al. Direct regulation of TWIST by HIF-1alpha promotes metastasis. Nat Cell Biol. 2008;10:295–305 (cited 14 Oct 2022). https://pubmed.ncbi.nlm.nih.gov/18297062/.

  54. Yan X, Qu X, Tian R, Xu L, Jin X, Yu S, et al. Hypoxia-induced NAD+ interventions promote tumor survival and metastasis by regulating mitochondrial dynamics. Life Sci. 2020;259 (cited 9 Oct 2022). https://pubmed.ncbi.nlm.nih.gov/32738362/.

  55. Tirpe AA, Gulei D, Ciortea SM, Crivii C, Berindan-Neagoe I. Hypoxia: overview on hypoxia-mediated mechanisms with a focus on the role of HIF genes. Int J Mol Sci. 2019;20(24):6140 (cited 13 Oct 2022). https://pubmed.ncbi.nlm.nih.gov/31817513/.

  56. Li S, Shao J, Zhou Y, Friis T, Yao J, Shi B, et al. The impact of Wnt signalling and hypoxia on osteogenic and cementogenic differentiation in human periodontal ligament cells. Mol Med Rep. 2016;14:4975 (cited 14 Oct 2022).https://pubmed.ncbi.nlm.nih.gov/27840938/.

  57. Hong CF, Chen WY, Wu CW. Upregulation of Wnt signaling under hypoxia promotes lung cancer progression. Oncol Rep. 2017;38:1706–14 (cited 14 Oct 2022). https://pubmed.ncbi.nlm.nih.gov/28713928/.

  58. Zheng JJ, Que QY, Xu HT, Luo DS, Sun Z, Ni JS, et al. Hypoxia activates SOX5/Wnt/β-catenin signaling by suppressing miR-338-3p in gastric cancer. Technol Cancer Res Treat. 2020;19:1–9 (cited 2 Aug 2022). https://pubmed.ncbi.nlm.nih.gov/32216582/.

  59. Xie J, Qi X, Wang Y, Yin X, Xu W, Han S, et al. Cancer-associated fibroblasts secrete hypoxia-induced serglycin to promote head and neck squamous cell carcinoma tumor cell growth in vitro and in vivo by activating the Wnt/β-catenin pathway. Cell Oncol (Dordr.). 2021;44:661–71 (cited 9 Oct 2022). https://pubmed.ncbi.nlm.nih.gov/33651283/.

  60. Yan Y, Liu F, Han L, Zhao L, Chen J, Olopade OI, et al. HIF-2α promotes conversion to a stem cell phenotype and induces chemoresistance in breast cancer cells by activating Wnt and Notch pathways. J Exp Clin Cancer Res. 2018;37 (cited 3 Dec 2021). https://pubmed.ncbi.nlm.nih.gov/30340507/.

  61. Kumar V, Gabrilovich DI. Hypoxia-inducible factors in regulation of immune responses in tumour microenvironment. Immunology. 2014;143:512–9 (cited 13 Oct 2022). https://pubmed.ncbi.nlm.nih.gov/25196648/.

  62. Kim Y, Lin Q, Glazer P, Yun Z. Hypoxic tumor microenvironment and cancer cell differentiation. Curr Mol Med. 2009;9:425–34 (cited 13 Oct 2022). https://pubmed.ncbi.nlm.nih.gov/19519400/.

  63. Priya Dorayappan KD, Wallbillich JJ, Cohn DE, et al. The biological significance and clinical applications of exosomes in ovarian cancer. Gynecol Oncol. 2016;142:199–205 (cited 13 Oct 2022). https://augusta.pure.elsevier.com/en/publications/the-biological-significance-and-clinical-applications-of-exosomes.

  64. Riches A, Campbell E, Borger E, Powis S. Regulation of exosome release from mammary epithelial and breast cancer cells—a new regulatory pathway. Eur J Cancer. 2014;50:1025–34 (cited 13 Oct 2022). https://pubmed.ncbi.nlm.nih.gov/24462375/.

  65. Colombo M, Raposo G, Théry C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol. 2014;30:255–89 (cited 13 Oct 2022). https://pubmed.ncbi.nlm.nih.gov/25288114/.

  66. King TD, Suto MJ, Li Y. The wnt/β-catenin signaling pathway: a potential therapeutic target in the treatment of triple negative breast cancer. J Cell Biochem. 2012;113:13–8. (cited 14 Oct 2022). https://pubmed.ncbi.nlm.nih.gov/21898546/.

  67. Park JE, Tan H, Datta A, Lai RC, Zhang H, Meng W, et al. Hypoxic tumor cell modulates its microenvironment to enhance angiogenic and metastatic potential by secretion of proteins and exosomes. Mol Cell Proteomics. 2010;9:1085–99 (cited 13 Oct 2022). https://pubmed.ncbi.nlm.nih.gov/20124223/.

  68. Rice GE, Scholz-Romero K, Sweeney E, Peiris H, Kobayashi M, Duncombe G, et al. The effect of glucose on the release and bioactivity of exosomes from first trimester trophoblast cells. J Clin Endocrinol Metab. 2015;100:E1280–8 (cited 13 Oct 2022). https://pubmed.ncbi.nlm.nih.gov/26241326/.

  69. Huang Z, Feng Y. Exosomes derived from hypoxic colorectal cancer cells promote angiogenesis through Wnt4-induced β-catenin signaling in endothelial cells. Oncol Res. 2017;25:651 (cited 8 Oct 2022). https://pubmed.ncbi.nlm.nih.gov/27712599/.

  70. Yue X, Lan F, Xia T. Hypoxic glioma cell-secreted exosomal miR-301a activates Wnt/β-catenin signaling and promotes radiation resistance by targeting TCEAL7. Mol Ther. 2019;27:1939–49 (cited 8 Oct 2022). https://pubmed.ncbi.nlm.nih.gov/31402274/.

  71. Yu Y, Min Z, Zhou Z, Linhong M, Tao R, Yan L, et al. Hypoxia-induced exosomes promote hepatocellular carcinoma proliferation and metastasis via miR-1273f transfer. Exp Cell Res. 2019;385:111649 (cited 8 Oct 2022). https://pubmed.ncbi.nlm.nih.gov/31562861/

  72. He J, Jing J, Feng J, Han X, Yuan Y, Guo T, et al. Lhx6 regulates canonical Wnt signaling to control the fate of mesenchymal progenitor cells during mouse molar root patterning. PLoS Genet. 2021;17 (cited 8 Oct 2022). https://pubmed.ncbi.nlm.nih.gov/33596195/.

  73. Lyle MA, Davis JP, Brozovich F V. Regulation of pulmonary vascular smooth muscle contractility in pulmonary arterial hypertension: implications for therapy. Front Physiol. 2017;8 (cited 8 Oct 2022). https://pubmed.ncbi.nlm.nih.gov/28878690/.

  74. Cheng FY, Chan CH, Wang BJ, Yeh YL, Wang YJ, Chiu HW. The oxygen-generating calcium peroxide-modified magnetic nanoparticles attenuate hypoxia-induced chemoresistance in triple-negative breast cancer. Cancers (Basel). 2021;13:1–16 (cited 9 Oct 2022). https://pubmed.ncbi.nlm.nih.gov/33546453/.

  75. Pan Y, Shao D, Zhao Y, Zhang F, Zheng X, Tan Y, et al. Berberine reverses hypoxia-induced chemoresistance in breast cancer through the inhibition of AMPK-HIF-1α. Int J Biol Sci. 2017;13:794–803 (cited 9 Oct 2022). https://pubmed.ncbi.nlm.nih.gov/28656004/.

  76. Xie W, Zhao H, Wang F, Wang Y, He Y, Wang T, et al. A novel humanized Frizzled-7-targeting antibody enhances antitumor effects of Bevacizumab against triple-negative breast cancer via blocking Wnt/β-catenin signaling pathway. J Exp Clin Cancer Res. 2021;40(1):30 (cited 10 Oct 2022). https://pubmed.ncbi.nlm.nih.gov/33436039/.

  77. Assidicky R, Tokat UM, Tarman IO, Saatci O, Ersan PG, Raza U, et al. Targeting HIF1-alpha/miR-326/ITGA5 axis potentiates chemotherapy response in triple-negative breast cancer. Breast Cancer Res Treat. 2022;193:331–48 (cited 13 Oct 2022). https://pubmed.ncbi.nlm.nih.gov/35338412/.

  78. Li W, Xue D, Xue M, Zhao J, Liang H, Liu Y, et al. Fucoidan inhibits epithelial-to-mesenchymal transition via regulation of the HIF-1α pathway in mammary cancer cells under hypoxia. Oncol Lett. 2019;18:330–8 (cited 9 Oct 2022). https://pubmed.ncbi.nlm.nih.gov/31289504/.

  79. Abreu de Oliveira WA, Moens S, El Laithy Y, van der Veer BK, Athanasouli P, Cortesi EE, et al. Wnt/β-catenin inhibition disrupts carboplatin resistance in isogenic models of triple-negative breast cancer. Front Oncol. 2021;11 (cited 9 Oct 2022). https://pubmed.ncbi.nlm.nih.gov/34367990/.

  80. Shetti D, Zhang B, Fan C, Mo C, Lee BH, Wei K. Low dose of paclitaxel combined with XAV939 attenuates metastasis, angiogenesis and growth in breast cancer by suppressing WNT signaling. Cells. 2019;8(8):892. (cited 8 Oct 2022). https://pubmed.ncbi.nlm.nih.gov/31416135/.

  81. Wan H, Li Z, Wang H, Cai F, Wang L. ST8SIA1 inhibition sensitizes triple negative breast cancer to chemotherapy via suppressing Wnt/β-catenin and FAK/Akt/mTOR. Clin Transl Oncol. 2021;23:902–10 (cited 9 Oct 2022). https://pubmed.ncbi.nlm.nih.gov/32939659/.

  82. Cheriyan VT, Muthu M, Patel K, Sekhar S, Rajeswaran W, Larsen SD, et al. CARP-1 functional mimetics are novel inhibitors of drug-resistant triple negative breast cancers. Oncotarget. 2016;7:73370–88 (cited 13 Oct 2022). https://pubmed.ncbi.nlm.nih.gov/27687593/.

  83. Akuma P, Okagu OD, Udenigwe CC. Naturally occurring exosome vesicles as potential delivery vehicle for bioactive compounds. Front Sustain Food Syst. 2019. https://doi.org/10.3389/fsufs.2019.00023.

    Article  Google Scholar 

  84. Fatima I, El-Ayachi I, Taotao L, Lillo MA, Krutilina R, Seagroves TN, et al. The natural compound Jatrophone interferes with Wnt/β-catenin signaling and inhibits proliferation and EMT in human triple-negative breast cancer. PLoS ONE. 2017;13(5): e0197796 (cited 8 Oct 2022). https://pubmed.ncbi.nlm.nih.gov/29771986/.

  85. Sowa T, Menju T, Chen-Yoshikawa TF, Takahashi K, Nishikawa S, Nakanishi T, et al. Hypoxia-inducible factor 1 promotes chemoresistance of lung cancer by inducing carbonic anhydrase IX expression. Cancer Med. 2017;6:288–97 (cited 9 Oct 2022). https://pubmed.ncbi.nlm.nih.gov/28028936/.

  86. Tian D, Luo L, Wang T, Qiao J. miR-296-3p inhibits cell proliferation by the SOX4-Wnt/βcatenin pathway in triple-negative breast cancer. J Biosci. 2021;46 (cited 9 Oct 2022). https://pubmed.ncbi.nlm.nih.gov/34785625/.

  87. Yang W, Cui G, Ding M, Yang M, Dai D. MicroRNA-124-3p.1 promotes cell proliferation through Axin1-dependent Wnt signaling pathway and predicts a poor prognosis of triple-negative breast cancer. J Clin Lab Anal. 2020;34 (cited 9 Oct 2022). https://pubmed.ncbi.nlm.nih.gov/32125723/.

  88. Shome R, Ghosh SS. Tweaking EMT and MDR dynamics to constrain triple-negative breast cancer invasiveness by EGFR and Wnt/β-catenin signaling regulation. Cell Oncol (Dordr.). 2021;44:405–22 (cited 13 Oct 2022). https://pubmed.ncbi.nlm.nih.gov/33398673/.

  89. Giacomelli C, Jung J, Wachter A, Ibing S, Will R, Uhlmann S, et al. Coordinated regulation of WNT/β-catenin, c-Met, and integrin signalling pathways by miR-193b controls triple negative breast cancer metastatic traits. BMC Cancer. 2021;21 (cited 9 Oct 2022). https://pubmed.ncbi.nlm.nih.gov/34863149/.

  90. Lin Y, Lin F, Anuchapreeda S, Chaiwongsa R, Duangmano S, Ran B, et al. Effect of miR-133b on progression and cisplatin resistance of triple-negative breast cancer through FGFR1-Wnt-β-catenin axis. Am J Transl Res. 2021;13:5969–84 (cited 9 Oct 2022). https://pubmed.ncbi.nlm.nih.gov/34306338/.

  91. Xie W, Zhao H, Wang F, Wang Y, He Y, Wang T, et al. A novel humanized Frizzled-7-targeting antibody enhances antitumor effects of Bevacizumab against triple-negative breast cancer via blocking Wnt/β-catenin signaling pathway. J Exp Clin Cancer Res. 2021;40 (cited 9 Oct 2022). https://pubmed.ncbi.nlm.nih.gov/33436039/.

  92. Xie W, Zhang Y, Zhang S, Wang F, Zhang K, Huang Y, et al. Oxymatrine enhanced anti-tumor effects of Bevacizumab against triple-negative breast cancer via abating Wnt/β-Catenin signaling pathway. Am J Cancer Res. 2019;9:1796–814 (cited 9 Oct 2022). http://www.ncbi.nlm.nih.gov/pubmed/31497360.

  93. Yao Y, Li X, Cheng L, Wu X, Wu B. Circular RNA FAT atypical cadherin 1 (circFAT1)/microRNA-525-5p/spindle and kinetochore-associated complex subunit 1 (SKA1) axis regulates oxaliplatin resistance in breast cancer by activating the notch and Wnt signaling pathway. Bioengineered. 2021;12:4032–43 (cited 13 Oct 2022). https://pubmed.ncbi.nlm.nih.gov/34288822/.

  94. Bhuvanalakshmi G, Basappa, Rangappa KS, Dharmarajan A, Sethi G, Kumar AP, et al. Breast cancer stem-like cells are inhibited by diosgenin, a steroidal saponin, by the attenuation of the Wnt β-catenin signaling via the Wnt antagonist secreted frizzled related protein-4. Front Pharmacol. 2017;8 (cited 9 Oct 2022). https://pubmed.ncbi.nlm.nih.gov/28373842/.

  95. Merikhian P, Eisavand MR, Farahmand L. Triple-negative breast cancer: understanding Wnt signaling in drug resistance. Cancer Cell Int. 2021;21:419 (cited 13 Oct 2022). https://pubmed.ncbi.nlm.nih.gov/34376211/.

  96. Miller-Kleinhenz J, Guo X, Qian W, Zhou H, Bozeman EN, Zhu L, et al. Dual-targeting Wnt and uPA receptors using peptide conjugated ultra-small nanoparticle drug carriers inhibited cancer stem-cell phenotype in chemo-resistant breast cancer. Biomaterials. 2018;152:47–62 (cited 9 Oct 2022). https://pubmed.ncbi.nlm.nih.gov/29107218/.

  97. Miller-Kleinhenz J, Guo X, Qian W, Zhou H, Bozeman EN, Zhu L, et al. Dual-targeting Wnt and uPA receptors using peptide conjugated ultra-small nanoparticle drug carriers inhibited cancer stem-cell phenotype in chemo-resistant breast cancer. Biomaterials. 2018;152:47 (cited 13 Oct 2022). https://pubmed.ncbi.nlm.nih.gov/29107218/.

  98. Hseu YC, Lin YC, Rajendran P, Thigarajan V, Mathew DC, Lin KY, et al. Antrodia salmonea suppresses invasion and metastasis in triple-negative breast cancer cells by reversing EMT through the NF-κB and Wnt/β-catenin signaling pathway. Food Chem Toxicol. 2019;124:219–30. cited 8 Oct 2022). https://pubmed.ncbi.nlm.nih.gov/30529123/.

  99. Huang C, Chen Y, Liu H, Yang J, Song X, Zhao J, et al. Celecoxib targets breast cancer stem cells by inhibiting the synthesis of prostaglandin E2 and down-regulating the Wnt pathway activity. Oncotarget. 2017;8:115254–69 (cited 9 Oct 2022). https://pubmed.ncbi.nlm.nih.gov/29383157/.

  100. Singh B, Maharjan S, Pan DC, Zhao Z, Gao Y, Zhang YS, et al. Imiquimod-gemcitabine nanoparticles harness immune cells to suppress breast cancer. Biomaterials. 2022;280 (cited 10 Oct 2022). https://pubmed.ncbi.nlm.nih.gov/34894584/.

  101. Liu DL, Bu HQ, Jin HM, Zhao JF, Li Y, Huang H. Enhancement of the effects of gemcitabine against pancreatic cancer by oridonin via the mitochondrial caspase-dependent signaling pathway. Mol Med Rep. 2014;10:3027–34 (cited 16 Oct 2022). https://pubmed.ncbi.nlm.nih.gov/25242370/.

  102. Alraouji NN, Al-Mohanna FH, Ghebeh H, Arafah M, Almeer R, Al-Tweigeri T, et al. Tocilizumab potentiates cisplatin cytotoxicity and targets cancer stem cells in triple-negative breast cancer. Mol Carcinog. 2020;59:1041–51 (cited 10 Oct 2022). https://pubmed.ncbi.nlm.nih.gov/32537818/.

  103. Hseu YC, Chang GR, Pan JY, Rajendran P, Mathew DC, Li ML, et al. Antrodia camphorata inhibits epithelial-to-mesenchymal transition by targeting multiple pathways in triple-negative breast cancers. J Cell Physiol. 2019;234:4125–39 (cited 8 Oct 2022). https://pubmed.ncbi.nlm.nih.gov/30146779/.

  104. Balkwill FR, Capasso M, Hagemann T. The tumor microenvironment at a glance. J Cell Sci. 2012;125:5591–6 (cited 8 Oct 2022). https://pubmed.ncbi.nlm.nih.gov/23420197/.

  105. Epstein ACR, Gleadle JM, McNeill LA, Hewitson KS, O’Rourke J, Mole DR, et al. C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell. 2001;107:43–54 (cited 8 Oct 2022). https://pubmed.ncbi.nlm.nih.gov/11595184/.

  106. Kaelin WG, Ratcliffe PJ. Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Mol Cell. 2008;30:393–402 (cited 14 Oct 2022). https://pubmed.ncbi.nlm.nih.gov/18498744/.

  107. Giaccia AJ, Simon MC, Johnson R. The biology of hypoxia: the role of oxygen sensing in development, normal function, and disease. Genes Dev. 2004;18:2183–94 (cited 14 Oct 2022). https://pubmed.ncbi.nlm.nih.gov/15371333/.

  108. Allaoui R, Bergenfelz C, Mohlin S, Hagerling C, Salari K, Werb Z, et al. Cancer-associated fibroblast-secreted CXCL16 attracts monocytes to promote stroma activation in triple-negative breast cancers. Nat Commun. 2016;7:1–14 (cited 14 Oct 2022). https://www.nature.com/articles/ncomms13050.

  109. Sikes KJ, Li J, Gao SG, Shen Q, Sandy JD, Plaas A, et al. TGF-b1 or hypoxia enhance glucose metabolism and lactate production via HIF1A signaling in tendon cells. Connect Tissue Res. 2018;59:458–71 (cited 14 Oct 2022). https://pubmed.ncbi.nlm.nih.gov/29447016/.

  110. Camp JT, Elloumi F, Roman-Perez E, Rein J, Stewart DA, Harrell JC, et al. Interactions with fibroblasts are distinct in basal-like and luminal breast cancers. Mol Cancer Res. 2011;9:3–13 (cited 14 Oct 2022). https://aacrjournals.org/mcr/article/9/1/3/90662/Interactions-with-Fibroblasts-Are-Distinct-in.

  111. Balaban S, Shearer RF, Lee LS, van Geldermalsen M, Schreuder M, Shtein HC, et al. Adipocyte lipolysis links obesity to breast cancer growth: adipocyte-derived fatty acids drive breast cancer cell proliferation and migration. Cancer Metab. 2017;5:1–14. https://doi.org/10.1186/s40170-016-0163-7. (cited 14 Oct 2022).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Dirat B, Bochet L, Dabek M, Daviaud D, Dauvillier S, Majed B, et al. Cancer-associated adipocytes exhibit an activated phenotype and contribute to breast cancer invasion. Cancer Res. 2011;71:2455–65 (cited 14 Oct 2022). https://aacrjournals.org/cancerres/article/71/7/2455/572662/Cancer-Associated-Adipocytes-Exhibit-an-Activated.

  113. Lee YK, Jung WH, Koo JS. Adipocytes can induce epithelial–mesenchymal transition in breast cancer cells. Breast Cancer Res Treat. 2015;153:323–35. https://doi.org/10.1007/s10549-015-3550-9. (cited 14 Oct 2022).

    Article  CAS  PubMed  Google Scholar 

  114. Frantz C, Stewart KM, Weaver VM. The extracellular matrix at a glance. J Cell Sci. 2010;123:4195–200 (cited 14 Oct 2022). https://pubmed.ncbi.nlm.nih.gov/21123617/.

  115. Thiery JP, Acloque H, Huang RYJ, Nieto MA. Epithelial–mesenchymal transitions in development and disease. Cell. 2009;139:871–90 (cited 14 Oct 2022). https://pubmed.ncbi.nlm.nih.gov/19945376/.

  116. Acloque H, Adams MS, Fishwick K, Bronner-Fraser M, Nieto MA. Epithelial–mesenchymal transitions: the importance of changing cell state in development and disease. J Clin Investig. 2009;119:1438–49 (cited 14 Oct 2022). https://pubmed.ncbi.nlm.nih.gov/19487820/.

  117. Cheung SY, Boey YJY, Koh VCY, Thike AA, Lim JCT, Iqbal J, et al. Role of epithelial–mesenchymal transition markers in triple-negative breast cancer. Breast Cancer Res Treat. 2015;152:489–98 (cited 14 Oct 2022). https://pubmed.ncbi.nlm.nih.gov/26123543/.

  118. Gonzalez-Angulo AM, Chen H, Karuturi MS, Chavez-Macgregor M, Tsavachidis S, Meric-Bernstam F, et al. Frequency of mesenchymal–epithelial transition factor gene (MET) and the catalytic subunit of phosphoinositide-3-kinase (PIK3CA) copy number elevation and correlation with outcome in patients with early stage breast cancer. Cancer. 2013;119:7–15 (cited 14 Oct 2022). https://pubmed.ncbi.nlm.nih.gov/22736407/.

  119. Weigelt B, et al. The contribution of gene expression profiling to breast cancer classification, prognostication and prediction: a retrospective of the last decade. J Pathol. 2010;220:263–80. https://doi.org/10.1002/path.2648. (cited 14 Oct 2022).

    Article  CAS  PubMed  Google Scholar 

  120. Wordinger RJ, Clark AF. Lysyl oxidases in the trabecular meshwork. J Glaucoma. 2014;23:S55 (cited 14 Oct 2022). https://pubmed.ncbi.nlm.nih.gov/25275908/.

  121. Brabrand A, Kariuki II, Engstrøm MJ, Haugen OA, Dyrnes LA, Åsvold BO, et al. Alterations in collagen fibre patterns in breast cancer. A premise for tumour invasiveness? APMIS. 2015;123:1–8 (cited 14 Oct 2022). https://pubmed.ncbi.nlm.nih.gov/25131437/.

  122. Kaushik S, Pickup MW, Weaver VM. From transformation to metastasis: deconstructing the extracellular matrix in breast cancer. Cancer Metastasis Rev. 2016;35:655–67 (cited 14 Oct 2022). https://pubmed.ncbi.nlm.nih.gov/27914000/.

  123. Lopez JI, Kang I, You WK, McDonald DM, Weaver VM. In situ force mapping of mammary gland transformation. Integr Biol. 2011;3:910–21 (cited 14 Oct 2022). https://pubmed.ncbi.nlm.nih.gov/21842067/.

  124. Kim SH, Lee HY, Jung SP, Kim S, Lee JE, Nam SJ, et al. Role of secreted type I collagen derived from stromal cells in two breast cancer cell lines. Oncol Lett. 2014;8:507–12 (cited 14 Oct 2022). https://pubmed.ncbi.nlm.nih.gov/25013462/.

  125. Castro-Sanchez L, Soto-Guzman A, Navarro-Tito N, Martinez-Orozco R, Salazar EP. Native type IV collagen induces cell migration through a CD9 and DDR1-dependent pathway in MDA-MB-231 breast cancer cells. Eur J Cell Biol. 2010;89:843–52 (cited 14 Oct 2022). https://pubmed.ncbi.nlm.nih.gov/20709424/.

  126. Maquoi E, Assent D, Detilleux J, Pequeux C, Foidart JM, Noël A. MT1-MMP protects breast carcinoma cells against type I collagen-induced apoptosis. Oncogene. 2012;31:480–93 (cited 14 Oct 2022). https://pubmed.ncbi.nlm.nih.gov/21706048/.

  127. Takai K, Le A, Weaver VM, Werb Z. Targeting the cancer-associated fibroblasts as a treatment in triple-negative breast cancer. Oncotarget. 2016;7:82889–901 (cited 14 Oct 2022). https://pubmed.ncbi.nlm.nih.gov/27756881/.

  128. Acerbi I, Cassereau L, Dean I, Shi Q, Au A, Park C, et al. Human breast cancer invasion and aggression correlates with ECM stiffening and immune cell infiltration. Integr Biol (UK). 2015;7:1120–34 (cited 14 Oct 2022). https://pubmed.ncbi.nlm.nih.gov/25959051/.

  129. Lu P, Weaver VM, Werb Z. The extracellular matrix: a dynamic niche in cancer progression. J Cell Biol. 2012;196:395–406 (cited 14 Oct 2022). https://pubmed.ncbi.nlm.nih.gov/22351925/.

  130. Langley R, et al. The seed and soil hypothesis revisited—the role of tumor–stroma interactions in metastasis to different organs. Int J Cancer. 2011;128:2527–35. https://doi.org/10.1002/ijc.26031. (cited 14 Oct 2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Sihto H, Lundin J, Lundin M, Lehtimäki T, Ristimäki A, Holli K, et al. Breast cancer biological subtypes and protein expression predict for the preferential distant metastasis sites: a nationwide cohort study. Breast Cancer Res. 2011;13(5):R87 (cited 14 Oct 2022). https://pubmed.ncbi.nlm.nih.gov/21914172/.

  132. Neradil J, et al. Nestin as a marker of cancer stem cells. Cancer Sci. 2015;106:803–11. https://doi.org/10.1111/cas.12691. (cited 14 Oct 2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Pavon LF, Sibov TT, de Oliveira DM, Marti LC, Cabral FR, de Souza JG, et al. Mesenchymal stem cell-like properties of CD133+ glioblastoma initiating cells. Oncotarget. 2016;7:40546–57 (cited 14 October ). https://pubmed.ncbi.nlm.nih.gov/27244897/.

  134. Lee TH, Avraham HK, Jiang S, Avraham S. Vascular endothelial growth factor modulates the transendothelial migration of MDA-MB-231 breast cancer cells through regulation of brain microvascular endothelial cell permeability. J Biol Chem. 2003;278:5277–84 (cited 14 Oct 2022). https://pubmed.ncbi.nlm.nih.gov/12446667/.

    Article  CAS  PubMed  Google Scholar 

  135. Cimino-Mathews A, Ye X, Meeker A, Argani P, Emens LA. Metastatic triple-negative breast cancers at first relapse have fewer tumor-infiltrating lymphocytes than their matched primary breast tumors: a pilot study. Hum Pathol. 2013;44:2055–63 (cited 14 Oct 2022). https://pubmed.ncbi.nlm.nih.gov/23701942/.

  136. Kim SJ, Kim JS, Park ES, Lee JS, Lin Q, Langley RR, et al. Astrocytes upregulate survival genes in tumor cells and induce protection from chemotherapy. Neoplasia. 2011;13:286–98 (cited 14 Oct 2022). https://www.sciencedirect.com/science/article/pii/S147655861180076X.

  137. Sobottka B, Pestalozzi B, Fink D, Moch H, Varga Z. Similar lymphocytic infiltration pattern in primary breast cancer and their corresponding distant metastases. Oncoimmunology. 2016;5 (cited 14 Oct 2022). https://www.tandfonline.com/doi/abs/.

  138. Ogiya R, Niikura N, Kumaki N, Bianchini G, Kitano S, Iwamoto T, et al. Comparison of tumor‐infiltrating lymphocytes between primary and metastatic tumors in breast cancer patients. Cancer Sci. 2016;107:1730–5 (cited 14 Oct 2022). https://onlinelibrary.wiley.com/doi/abs/.

  139. Reeves KW, Ness RB, Stone RA, Weissfeld JL, Vogel VG, Powers RW, et al. Vascular endothelial growth factor and breast cancer risk. Cancer Causes Control. 2009;20:375–86 (cited 14 Oct 2022). https://pubmed.ncbi.nlm.nih.gov/18987982/.

  140. Sepulveda A, Buchanan EP. Vascular tumors. Semin Plast Surg. 2014;28:49 (cited 14 Oct 2022). https://pubmed.ncbi.nlm.nih.gov/25045329/.

  141. Eichhorn ME, Kleespies A, Angele MK, Jauch KW, Bruns CJ. Angiogenesis in cancer: molecular mechanisms, clinical impact. Langenbecks Arch Surg. 2007;392:371–9 (cited 14 Oct 2022). https://pubmed.ncbi.nlm.nih.gov/17458577/.

  142. Ayuso JM, Virumbrales-Munoz M, McMinn PH, Rehman S, Gomez I, Karim MR, et al. Tumor-on-a-chip: a microfluidic model to study cell response to environmental gradients. Lab Chip. 2019;19:3461–71 (cited 14 Oct 2022). https://pubmed.ncbi.nlm.nih.gov/31506657/.

  143. O’Reilly D, Sendi M, Kelly CM. Overview of recent advances in metastatic triple negative breast cancer. World J Clin Oncol. 2021;12:164 (cited 14 Oct 2022).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Firatligil-Yildirir B, Bati-Ayaz G, Tahmaz I, Bilgen M, Pesen-Okvur D, Yalcin-Ozuysal O. On-chip determination of tissue-specific metastatic potential of breast cancer cells. Biotechnol Bioeng. 2021;118:3799–810 (cited 9 Oct 2022). https://pubmed.ncbi.nlm.nih.gov/34110014/.

  145. Moccia C, Haase K. Engineering breast cancer on-chip-moving toward subtype specific models. Front Bioeng Biotechnol. 2021;9 (cited 9 Oct 2022). https://pubmed.ncbi.nlm.nih.gov/34249889/.

  146. Song K, Zu X, Du Z, Hu Z, Wang J, Li J. Diversity models and applications of 3D breast tumor-on-a-chip. Micromachines (Basel). 2021;12 (cited 10 Oct 2022). https://pubmed.ncbi.nlm.nih.gov/34357224/.

  147. Chakrabarty S, Quiros-Solano WF, Kuijten MMP, Haspels B, Mallya S, Lo CSY, et al. A microfluidic cancer-on-chip platform predicts drug response using organotypic tumor slice culture. Cancer Res. 2022;82:510–20 (cited 10 Oct 2022). https://pubmed.ncbi.nlm.nih.gov/34872965/.

  148. Kim J, Lee C, Kim I, Ro J, Kim J, Min Y, et al. Three-dimensional human liver-chip emulating premetastatic niche formation by breast cancer-derived extracellular vesicles. ACS Nano. 2020;14:14971–88 (cited 14 Oct 2022). https://news.unist.ac.kr/new-study-unveils-3d-human-liver-chip-emulating-premetastatic-niche-formation-by-breast-cancer-derived-evs/.

  149. Dornhof J, Kieninger J, Muralidharan H, Maurer J, Urban GA, Weltin A. Microfluidic organ-on-chip system for multi-analyte monitoring of metabolites in 3D cell cultures. Lab Chip. 2022;22:225–39 (cited 10 Oct 2022). https://pubmed.ncbi.nlm.nih.gov/34851349/.

  150. Tian H, Pang J, Qin K, Yuan W, Kong J, Ma H, et al. A novel tissue-based liver–kidney-on-a-chip can mimic liver tropism of extracellular vesicles derived from breast cancer cells. Biotechnol J. 2020;15 (cited 10 Oct 2022). https://pubmed.ncbi.nlm.nih.gov/31473998/.

  151. Eales KL, Hollinshead KER, Tennant DA. Hypoxia and metabolic adaptation of cancer cells. Oncogenesis. 2016;5:e190. (cited 14 Oct 2022). https://pubmed.ncbi.nlm.nih.gov/26807645/.

  152. Xie H, Simon MC. Oxygen availability and metabolic reprogramming in cancer. J Biol Chem. 2017;292:16825–32. (cited 14 Oct 2022). https://pubmed.ncbi.nlm.nih.gov/28842498/.

  153. Napoli E, Lisanti MP, Rizza S, Forsyth NR, Tameemi A, Tp D, et al. Hypoxia-modified cancer cell metabolism. Front Cell Dev Biol. 2019;7:4 (cited 14 Oct 2022). www.frontiersin.org.

  154. de Francesco A. Introduction. The antiquity of the Italian nation. 2013;1–28 (cited 14 Oct 2022). https://academic.oup.com/book/10049/chapter/157470763.

  155. Marxsen JH, Stengel P, Doege K, Heikkinen P, Jokilehto T, Wagner T, et al. Hypoxia-inducible factor-1 (HIF-1) promotes its degradation by induction of HIF-α-prolyl-4-hydroxylases. Biochem J. 2004;381:761–7 (cited 14 Oct 2022). https://pubmed.ncbi.nlm.nih.gov/15104534/.

  156. Danquah MK, Zhang XA, Mahato RI. Extravasation of polymeric nanomedicines across tumor vasculature. Adv Drug Deliv Rev. 2011;63:623–39. (cited 14 Oct 2022). https://pubmed.ncbi.nlm.nih.gov/21144874/.

  157. Nagao A, Kobayashi M, Koyasu S, Chow CCT, Harada H. HIF-1-dependent reprogramming of glucose metabolic pathway of cancer cells and its therapeutic significance. Int J Mol Sci. 2019;20:238 (cited 14 Oct 2022). https://www.mdpi.com/1422-0067/20/2/238/htm.

  158. Tsuruno Y, Okubo K, Fujiwara T, Yamaoka Y, Takahashi E. An in vitro model for determining tumor cell migration under metabolic gradients. Adv Exp Med Biol. 2018;1072:201–5 (cited 14 Oct 2022). https://pubmed.ncbi.nlm.nih.gov/30178346/.

  159. Li JJ, Tsang JY, Tse GM. Tumor microenvironment in breast cancer—updates on therapeutic implications and pathologic assessment. Cancers (Basel). 2021;13(16):4233 (cited 14 Oct 2022) .https://pubmed.ncbi.nlm.nih.gov/34439387/

  160. Lam SF, Bishop KW, Mintz R, Fang L, Achilefu S. Calcium carbonate nanoparticles stimulate cancer cell reprogramming to suppress tumor growth and invasion in an organ-on-a-chip system. Sci Rep. 2021;11 (cited 14 Oct 2022). https://pubmed.ncbi.nlm.nih.gov/33927272/.

  161. Crippa M, Bersini S, Gilardi M, Arrigoni C, Gamba S, Falanga A, et al. A microphysiological early metastatic niche on a chip reveals how heterotypic cell interactions and inhibition of integrin subunit β3 impact breast cancer cell extravasation. Lab Chip. 2021;21:1061–72 (cited 14 Oct 2022). https://pubmed.ncbi.nlm.nih.gov/33522559/.

Download references

Acknowledgements

We would like to express our gratitude to the Vellore Institute of Technology for providing all facilities required for the completion of the review.

Funding

This review did not receive any specific grant from funding agencies in the public, commercial, or from not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Devi Rajeswari.

Ethics declarations

Conflict of interest

The author declares no conflict of interest. The author has solely contributed to this article, therefore no competing interest.

Consent for publication

Given by the authors and the institute.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banerjee, M., Devi Rajeswari, V. A novel cross-communication of HIF-1α and HIF-2α with Wnt signaling in TNBC and influence of hypoxic microenvironment in the formation of an organ-on-chip model of breast cancer. Med Oncol 40, 245 (2023). https://doi.org/10.1007/s12032-023-02112-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-023-02112-8

Keywords

Navigation