Skip to main content
Log in

Hydrogen sulfide suppresses H2O2-induced proliferation and migration of HepG2 cells through Wnt/β-catenin signaling pathway

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Both H2S and H2O2 affect many cellular events, such as cell differentiation, cell proliferation and cell death. However, there is some controversy about the roles of H2S and H2O2, since the detailed mechanisms they are involved remain unclear. In this study, low concentration of H2O2 (40 μM) increased the viability of hepatocellular carcinoma cells HepG2, while both H2S and high concentration of H2O2 decreased the cell viability in a dose-dependent manner. Wound healing assay indicated that 40 μM H2O2 promoted migration of HepG2 cells, which was suppressed by exogenous H2S. Further analysis revealed that administration of exogenous H2S and H2O2 changed the redox status of Wnt3a in HepG2 cells. Altered expression of proteins including Cyclin D1, TCF-4, and MMP7, which are downstream of the Wnt3a/β-catenin signaling pathway, were found after treatment with exogenous H2S and H2O2. Compared with H2S, low concentration of H2O2 showed opposite effects on these protein expression levels in HepG2 cells. These results suggest that H2S suppressed H2O2-induced proliferation and migration of HepG2 through regulating Wnt3a/β-catenin signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data is openly available in the public database. The data that support the findings of this study are openly available in the Cancer Genome Atlas (https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga) and Genotype-Tissue Expression (https://www.gtexportal.org/home).

Abbreviations

HCC:

Hepatocellular carcinoma

H2S:

Hydrogen sulfide

RFA:

Radiofrequency ablation

TACE:

Transcatheter arterial chemoembolization

JAK:

Janus protein tyrosine kinase

CCK-8:

Cell counting kit

NO:

Nitric oxide

CO:

Carbon monoxide

References

  1. Shah PA, Patil R, Harrison SA. NAFLD-related hepatocellular carcinoma: the growing challenge. Hepatology. 2023;77(1):323–38.

    Article  PubMed  Google Scholar 

  2. Bai J, Huang M, Song B, Luo W, Ding R. The current status and future prospects for conversion therapy in the treatment of hepatocellular carcinoma. Technol Cancer Res Treat. 2023;22:15330338231159718.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Wang YQ, Wang AJ, Zhang TT, Chen SH. Association of alpha-fetoprotein and metastasis for small hepatocellular carcinoma: a propensity-matched analysis. Sci Rep. 2022;12(1):15676.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jiang Y, Han Q, Zhao H, Zhang J. The mechanisms of HBV-induced hepatocellular carcinoma. J Hepatocell Carcinoma. 2021;8:435–50.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Li L, Zhao GD, Shi Z, Qi LL, Zhou LY, Fu ZX. The Ras/Raf/MEK/ERK signaling pathway and its role in the occurrence and development of HCC. Oncol Lett. 2016;12(5):3045–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Konyn P, Ahmed A, Kim D. Current epidemiology in hepatocellular carcinoma. Expert Rev Gastroenterol Hepatol. 2021;15(11):1295–307.

    Article  CAS  PubMed  Google Scholar 

  7. Jiang Y, Han QJ, Zhang J. Hepatocellular carcinoma: Mechanisms of progression and immunotherapy. World J Gastroenterol. 2019;25(25):3151–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Samant H, Amiri HS, Zibari GB. Addressing the worldwide hepatocellular carcinoma: epidemiology, prevention and management. J Gastrointest Oncol. 2021;12(Suppl 2):S361–73.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Loeppen S, Koehle C, Buchmann A, Schwarz M. A beta-catenin-dependent pathway regulates expression of cytochrome P450 isoforms in mouse liver tumors. Carcinogenesis. 2005;26(1):239–48.

    Article  CAS  PubMed  Google Scholar 

  10. Tien LT, Ito M, Nakao M, Niino D, Serik M, Nakashima M, Wen CY, Yatsuhashi H, Ishibashi H. Expression of beta-catenin in hepatocellular carcinoma. World J Gastroenterol. 2005;11(16):2398–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Simon C, Stielow B, Nist A, Rohner I, Weber LM, Geller M, Fischer S, Stiewe T, Liefke R. The CpG Island-binding protein SAMD1 contributes to an unfavorable gene signature in HepG2 hepatocellular carcinoma cells. Biology (Basel). 2022;11(4):557.

    CAS  PubMed  Google Scholar 

  12. Feitelson MA, Sun B, Satiroglu Tufan NL, Liu J, Pan J, Lian Z. Genetic mechanisms of hepatocarcinogenesis. Oncogene. 2002;21(16):2593–604.

    Article  CAS  PubMed  Google Scholar 

  13. Porta C, Paglino C, Mosca A. Targeting PI3K/Akt/mTOR signaling in cancer. Front Oncol. 2014;4:64.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Sun EJ, Wankell M, Palamuthusingam P, McFarlane C, Hebbard L. Targeting the PI3K/Akt/mTOR pathway in hepatocellular carcinoma. Biomedicines. 2021;9(11):1639.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Garcia-Lezana T, Lopez-Canovas JL, Villanueva A. Signaling pathways in hepatocellular carcinoma. Adv Cancer Res. 2021;149:63–101.

    Article  PubMed  Google Scholar 

  16. van der Voort R, Taher TE, Derksen PW, Spaargaren M, van der Neut R, Pals ST. The hepatocyte growth factor/Met pathway in development, tumorigenesis, and B-cell differentiation. Adv Cancer Res. 2000;79:39–90.

    Article  PubMed  Google Scholar 

  17. Ihle JN. The Janus protein tyrosine kinases in hematopoietic cytokine signaling. Semin Immunol. 1995;7(4):247–54.

    Article  CAS  PubMed  Google Scholar 

  18. Mohan CD, Bharathkumar H, Bulusu KC, Pandey V, Rangappa S, Fuchs JE, Shanmugam MK, Dai X, Li F, Deivasigamani A, Hui KM, Kumar AP, Lobie PE, Bender A, Basappa, Sethi G, Rangappa KS. Development of a novel azaspirane that targets the Janus kinase-signal transducer and activator of transcription (STAT) pathway in hepatocellular carcinoma in vitro and in vivo. J Biol Chem. 2014;289(49):34296–307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang X, Liao X, Yu T, Gong Y, Zhang L, Huang J, Yang C, Han C, Yu L, Zhu G, Qin W, Liu Z, Zhou X, Liu J, Han Q, Peng T. Analysis of clinical significance and prospective molecular mechanism of main elements of the JAK/STAT pathway in hepatocellular carcinoma. Int J Oncol. 2019;55(4):805–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Tabernero J, Shapiro GI, LoRusso PM, Cervantes A, Schwartz GK, Weiss GJ, Paz-Ares L, Cho DC, Infante JR, Alsina M, Gounder MM, Falzone R, Harrop J, White AC, Toudjarska I, Bumcrot D, Meyers RE, Hinkle G, Svrzikapa N, Hutabarat RM, Clausen VA, Cehelsky J, Nochur SV, Gamba-Vitalo C, Vaishnaw AK, Sah DW, Gollob JA, Burris HA 3rd. First-in-humans trial of an RNA interference therapeutic targeting VEGF and KSP in cancer patients with liver involvement. Cancer Discov. 2013;3(4):406–17.

    Article  CAS  PubMed  Google Scholar 

  21. Sun HJ, Wu ZY, Nie XW, Wang XY, Bian JS. Implications of hydrogen sulfide in liver pathophysiology: mechanistic insights and therapeutic potential. J Adv Res. 2021;27:127–35.

    Article  CAS  PubMed  Google Scholar 

  22. Wang SS, Chen YH, Chen N, Wang LJ, Chen DX, Weng HL, Dooley S, Ding HG. Hydrogen sulfide promotes autophagy of hepatocellular carcinoma cells through the PI3K/Akt/mTOR signaling pathway. Cell Death Dis. 2017;8(3):e2688.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chan MV, Wallace JL. Hydrogen sulfide-based therapeutics and gastrointestinal diseases: translating physiology to treatments. Am J Physiol Gastrointest Liver Physiol. 2013;305(7):G467–73.

    Article  CAS  PubMed  Google Scholar 

  24. Bhatia M. H2S and inflammation: an overview. Handb Exp Pharmacol. 2015;230:165–80.

    Article  CAS  PubMed  Google Scholar 

  25. Kabil O, Motl N, Banerjee R. H2S and its role in redox signaling. Biochim Biophys Acta. 2014;1844(8):1355–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hu LF, Wong PT, Moore PK, Bian JS. Hydrogen sulfide attenuates lipopolysaccharide-induced inflammation by inhibition of p38 mitogen-activated protein kinase in microglia. J Neurochem. 2007;100(4):1121–8.

    Article  CAS  PubMed  Google Scholar 

  27. Lu S, Gao Y, Huang X, Wang X. GYY4137, a hydrogen sulfide (H(2)S) donor, shows potent anti-hepatocellular carcinoma activity through blocking the STAT3 pathway. Int J Oncol. 2014;44(4):1259–67.

    Article  CAS  PubMed  Google Scholar 

  28. Zhen Y, Pan W, Hu F, Wu H, Feng J, Zhang Y, Chen J. Exogenous hydrogen sulfide exerts proliferation/anti-apoptosis/angiogenesis/migration effects via amplifying the activation of NF-kappaB pathway in PLC/PRF/5 hepatoma cells. Int J Oncol. 2015;46(5):2194–204.

    Article  CAS  PubMed  Google Scholar 

  29. Wu D, Li M, Tian W, Wang S, Cui L, Li H, Wang H, Ji A, Li Y. Hydrogen sulfide acts as a double-edged sword in human hepatocellular carcinoma cells through EGFR/ERK/MMP-2 and PTEN/AKT signaling pathways. Sci Rep. 2017;7(1):5134.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Knaus UG. Oxidants in physiological processes. Handb Exp Pharmacol. 2021;264:27–47.

    Article  CAS  PubMed  Google Scholar 

  31. Klaunig JE. Oxidative stress and cancer. Curr Pharm Des. 2018;24(40):4771–8.

    Article  CAS  PubMed  Google Scholar 

  32. Park WH. Hydrogen peroxide inhibits the growth of lung cancer cells via the induction of cell death and G1phase arrest. Oncol Rep. 2018;40(3):1787–94.

    CAS  PubMed  Google Scholar 

  33. Yang N, Xiao W, Song X, Wang W, Dong X. Recent advances in tumor microenvironment hydrogen peroxide-responsive materials for cancer photodynamic therapy. Nanomicro Lett. 2020;12(1):15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wang M, Zhao J, Zhang L, Wei F, Lian Y, Wu Y, Gong Z, Zhang S, Zhou J, Cao K, Li X, Xiong W, Li G, Zeng Z, Guo C. Role of tumor microenvironment in tumorigenesis. J Cancer. 2017;8(5):761–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chua PJ, Yip GW, Bay BH. Cell cycle arrest induced by hydrogen peroxide is associated with modulation of oxidative stress related genes in breast cancer cells. Exp Biol Med (Maywood). 2009;234(9):1086–94.

    Article  CAS  PubMed  Google Scholar 

  36. Ma L, Zhu WZ, Liu TT, Fu HL, Liu ZJ, Yang BW, Song TY, Li GR. H2O2 inhibits proliferation and mediates suppression of migration via DLC1/RhoA signaling in cancer cells. Asian Pac J Cancer Prev. 2015;16(4):1637–42.

    Article  PubMed  Google Scholar 

  37. Liu SL, Lin X, Shi DY, Cheng J, Wu CQ, Zhang YD. Reactive oxygen species stimulated human hepatoma cell proliferation via cross-talk between PI3-K/PKB and JNK signaling pathways. Arch Biochem Biophys. 2002;406(2):173–82.

    Article  CAS  PubMed  Google Scholar 

  38. Park IJ, Hwang JT, Kim YM, Ha J, Park OJ. Differential modulation of AMPK signaling pathways by low or high levels of exogenous reactive oxygen species in colon cancer cells. Ann N Y Acad Sci. 2006;1091:102–9.

    Article  CAS  PubMed  Google Scholar 

  39. Qiao L, Zhang H, Yu J, Francisco R, Dent P, Ebert MP, Rocken C, Farrell G. Constitutive activation of NF-kappaB in human hepatocellular carcinoma: evidence of a cytoprotective role. Hum Gene Ther. 2006;17(3):280–90.

    Article  CAS  PubMed  Google Scholar 

  40. Nahon P, Bamba-Funck J, Layese R, Trepo E, Zucman-Rossi J, Cagnot C, Ganne-Carrie N, Chaffaut C, Guyot E, Ziol M, Sutton A, Audureau E, CirVir AC, C. groups. Integrating genetic variants into clinical models for hepatocellular carcinoma risk stratification in cirrhosis. J Hepatol. 2023;78(3):584–95.

    Article  CAS  PubMed  Google Scholar 

  41. Lu C, He Y, Duan J, Yang Y, Zhong C, Zhang J, Liao W, Huang X, Zhu R, Li M. Expression of Wnt3a in hepatocellular carcinoma and its effects on cell cycle and metastasis. Int J Oncol. 2017;51(4):1135–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chattopadhyay M, Kodela R, Nath N, Dastagirzada YM, Velazquez-Martinez CA, Boring D, Kashfi K. Hydrogen sulfide-releasing NSAIDs inhibit the growth of human cancer cells: a general property and evidence of a tissue type-independent effect. Biochem Pharmacol. 2012;83(6):715–22.

    Article  CAS  PubMed  Google Scholar 

  43. Li L, Hsu A, Moore PK. Actions and interactions of nitric oxide, carbon monoxide and hydrogen sulphide in the cardiovascular system and in inflammation—a tale of three gases! Pharmacol Ther. 2009;123(3):386–400.

    Article  CAS  PubMed  Google Scholar 

  44. Xiao Y, Zhang X, Huang Q. Protective effects of cordyceps sinensis exopolysaccharideselenium nanoparticles on H2O2-induced oxidative stress in HepG2 cells. Int J Biol Macromol. 2022;213:339–51.

    Article  CAS  PubMed  Google Scholar 

  45. L.C.-G.G.Z.-Q.I.R.I.X.H. chun-Xu (2004) Role of H2 02 in promoting prolifera. tion of HepG2 cells, J Fourth Mil Med Univ 25(20) 1902–1904.

  46. He S, Lu Y, Liu X, Huang X, Keller ET, Qian CN, Zhang J. Wnt3a: functions and implications in cancer. Chin J Cancer. 2015;34(12):554–62.

    CAS  PubMed  Google Scholar 

  47. MacDonald BT, Hien A, Zhang X, Iranloye O, Virshup DM, Waterman ML, He X. Disulfide bond requirements for active Wnt ligands. J Biol Chem. 2014;289(26):18122–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zheng W, Yao M, Fang M, Pan L, Wang L, Yang J, Dong Z, Yao D. Oncogenic Wnt3a: a candidate specific marker and novel molecular target for hepatocellular carcinoma. J Cancer. 2019;10(23):5862–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by The Chongqing Natural Science Foundation Project (No. CSTC2020jcyj- msxmX0912) and the Yuzhong District Basic Research and Frontier Exploration Project of Chongqing (No. 20200136). We also thank Dr. Xunling Han for help with pathological examinations.

Funding

This study was funded by The Chongqing Natural Science Foundation Project, CSTC2020jcyj- msxmX0912, Hongzhi Zhao, Yuzhong District Basic Research and Frontier Exploration Project of Chongqing, 20200136, Hongzhi Zhao

Author information

Authors and Affiliations

Authors

Contributions

ZH designed the study. ZH performed the experiments and analyzed the data, with assistance from ZL, WL and HS. ZW analyzed the data. ZH wrote the manuscript which was read and revised by all authors read.

Corresponding author

Correspondence to Hongzhi Zhao.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Consent for publication

The informed consent was obtained from study participants.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, H., Zhao, L., Wu, L. et al. Hydrogen sulfide suppresses H2O2-induced proliferation and migration of HepG2 cells through Wnt/β-catenin signaling pathway. Med Oncol 40, 214 (2023). https://doi.org/10.1007/s12032-023-02091-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-023-02091-w

Keywords

Navigation