Skip to main content

Advertisement

Log in

GLDC promotes colorectal cancer metastasis through epithelial–mesenchymal transition mediated by Hippo signaling pathway

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Cancer metastasis remains a major cause of death in cancer patients, and epithelial–mesenchymal transition (EMT) plays a decisive role in cancer metastasis. Recently, abnormal expression of Glycine Decarboxylase (GLDC) has been demonstrated in tumor progression, and GLDC is up-regulated in cancers, such as lung, prostate, bladder, and cervical cancers. However, the exact role of GLDC in colorectal cancer (CRC) progression remains to be elucidated. The aim of our study was to explore the role of GLDC in CRC metastasis. The GSE75117 database was used to investigate GLDC expression in tumor center and invasive front tissues and we found that GLDC expression levels were higher in the invasive front tissue. GLDC expression levels were negatively correlated with the prognosis of CRC patients. In vitro studies have showed that GLDC can promote invasion and migration of CRC cells by inhibiting the Hippo signaling pathway and regulating the EMT process. Blocking the Hippo signaling pathway with Verteporfin reduced the effect of GLDC on CRC metastasis. In vivo metastasis assays further confirmed that tail vein injection of GLDC+/+ cells induced more lung metastasis, compared to normal CRC cells. The results of this study suggest that GLDC promotes EMT through the Hippo signaling pathway, providing a new therapeutic target for CRC metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424. https://doi.org/10.3322/caac.21492.

    Article  PubMed  Google Scholar 

  2. Arnold M, Sierra MS, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global patterns and trends in colorectal cancer incidence and mortality. Gut. 2017;66(4):683–91. https://doi.org/10.1136/gutjnl-2015-310912.

    Article  PubMed  Google Scholar 

  3. Barugel ME, Vargas C, Krygier WG. Metastatic colorectal cancer: recent advances in its clinical management. Expert Rev Anticancer Ther. 2009;9(12):1829–47. https://doi.org/10.1586/era.09.143.

    Article  CAS  PubMed  Google Scholar 

  4. Wei HY, Feng R, Shao H, Feng B, Liu HQ, Men JL, Zou W. Serum glycine dehydrogenase is associated with increased risk of lung cancer and promotes malignant transformation by regulating DNA methyltransferases expression. Mol Med Rep. 2018;18(2):2293–9. https://doi.org/10.3892/mmr.2018.9214.

    Article  CAS  PubMed  Google Scholar 

  5. Li N, Li H, Cao L, Zhan X. Quantitative analysis of the mitochondrial proteome in human ovarian carcinomas. Endocr Relat Cancer. 2018;25(10):909–31. https://doi.org/10.1530/ERC-18-0243.

    Article  PubMed  Google Scholar 

  6. Li X, Cui C, Guo Y, Yang G. Glycine decarboxylase expression increased in p53-mutated B cell Lymphoma mice. Oncol Res Treat. 2015;38(11):586–9. https://doi.org/10.1159/000441595.

    Article  CAS  PubMed  Google Scholar 

  7. Zhang WC, Shyh-Chang N, Yang H, Rai A, Umashankar S, Ma S, Soh BS, Sun LL, Tai BC, Nga ME, Bhakoo KK, Jayapal SR, Nichane M, Yu Q, Ahmed DA, Tan C, Sing WP, Tam J, Thirugananam A, Noghabi MS, Pang YH, Ang HS, Mitchell W, Robson P, Kaldis P, Soo RA, Swarup S, Lim EH, Lim B. Glycine decarboxylase activity drives non-small cell lung cancer tumor-initiating cells and tumorigenesis. Cell. 2012;148(1–2):259–72. https://doi.org/10.1016/j.cell.2011.11.050.

    Article  CAS  PubMed  Google Scholar 

  8. Go MK, Zhang WC, Lim B, Yew WS. Glycine decarboxylase is an unusual amino acid decarboxylase involved in tumorigenesis. Biochemistry. 2014;53(5):947–56. https://doi.org/10.1021/bi4014227.

    Article  CAS  PubMed  Google Scholar 

  9. Woo CC, Kaur K, Chan WX, Teo XQ, Lee THP. Inhibiting glycine decarboxylase suppresses pyruvate-to-lactate metabolism in lung cancer cells. Front Oncol. 2018;8:196. https://doi.org/10.3389/fonc.2018.00196.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Ma S, Meng Z, Chen R, Guan KL. The hippo pathway: biology and pathophysiology. Annu Rev Biochem. 2019;88:577–604. https://doi.org/10.1146/annurev-biochem-013118-111829.

    Article  CAS  PubMed  Google Scholar 

  11. Yu FX, Zhao B, Guan KL. Hippo pathway in organ size control, tissue homeostasis, and cancer. Cell. 2015;163(4):811–28. https://doi.org/10.1016/j.cell.2015.10.044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Deng Q, Jiang G, Wu Y, Li J, Liang W, Chen L, Su Q, Li W, Du J, Wong CKC, Chen Z, Wang H. GPER/Hippo-YAP signal is involved in Bisphenol S induced migration of triple negative breast cancer (TNBC) cells. J Hazard Mater. 2018;355:1–9. https://doi.org/10.1016/j.jhazmat.2018.05.013.

    Article  CAS  PubMed  Google Scholar 

  13. Zhao W, Zhang LN, Wang XL, Zhang J, Yu HX. Long noncoding RNA NSCLCAT1 increases non-small cell lung cancer cell invasion and migration through the Hippo signaling pathway by interacting with CDH1. FASEB J. 2019;33(1):1151–66. https://doi.org/10.1096/fj.201800408R.

    Article  CAS  PubMed  Google Scholar 

  14. Ni W, Zhang Y, Zhan Z, Ye F, Liang Y, Huang J, Chen K, Chen L, Ding Y. A novel lncRNA uc. 134 represses hepatocellular carcinoma progression by inhibiting CUL4A-mediated ubiquitination of LATS1. J Hematol Oncol. 2017;10(1):91. https://doi.org/10.1186/s13045-017-0449-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Guo PD, Lu XX, Gan WJ, Li XM, He XS, Zhang S, Ji QH, Zhou F, Cao Y, Wang JR, Li JM, Wu H. RARγ downregulation contributes to colorectal tumorigenesis and metastasis by derepressing the hippo-yap pathway. Cancer Res. 2016;76(13):3813–25. https://doi.org/10.1158/0008-5472.CAN-15-2882.

    Article  CAS  PubMed  Google Scholar 

  16. Rawat SJ, Chernoff J. Regulation of mammalian Ste20 (Mst) kinases. Trends Biochem Sci. 2015;40(3):149–56. https://doi.org/10.1016/j.tibs.2015.01.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kittur FS, Lin Y, Arthur E, Hung CY, Li PA, Sane DC, Xie J. Recombinant asialoerythropoetin protects HL-1 cardiomyocytes from injury via suppression of Mst1 activation. Biochem Biophys Rep. 2019;17:157–68. https://doi.org/10.1016/j.bbrep.2019.01.004.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Arthur E, Kittur FS, Lin Y, Hung CY, Sane DC, Xie J. Plant-produced asialo-erythropoietin restores pancreatic beta-cell function by suppressing mammalian sterile-20-like kinase (MST1) and caspase-3 activation. Front Pharmacol. 2017;8:208. https://doi.org/10.3389/fphar.2017.00208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Guo Z, Li G, Bian E, Ma CC, Wan J, Zhao B. TGF-β-mediated repression of MST1 by DNMT1 promotes glioma malignancy. Biomed Pharmacother. 2017;94:774–80. https://doi.org/10.1016/j.biopha.2017.07.081.

    Article  CAS  PubMed  Google Scholar 

  20. Kuser-Abali G, Alptekin A, Cinar B. Overexpression of MYC and EZH2 cooperates to epigenetically silence MST1 expression. Epigenetics. 2014;9(4):634–43. https://doi.org/10.4161/epi.27957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jain M, Nilsson R, Sharma S, Madhusudhan N, Kitami T, Souza AL, Kafri R, Kirschner MW, Clish CB, Mootha VK. Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation. Science. 2012;336(6084):1040–4. https://doi.org/10.1126/science.1218595.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kim D, Fiske BP, Birsoy K, Freinkman E, Kami K, Possemato RL, Chudnovsky Y, Pacold ME, Chen WW, Cantor JR, Shelton LM, Gui DY, Kwon M, Ramkissoon SH, Ligon KL, Kang SW, Snuderl M, Vander Heiden MG, Sabatini DM. SHMT2 drives glioma cell survival in ischaemia but imposes a dependence on glycine clearance. Nature. 2015;520(7547):363–7. https://doi.org/10.1038/nature14363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Maddocks ODK, Athineos D, Cheung EC, Lee P, Zhang T, van den Broek NJF, Mackay GM, Labuschagne CF, Gay D, Kruiswijk F, Blagih J, Vincent DF, Campbell KJ, Ceteci F, Sansom OJ, Blyth K, Vousden KH. Modulating the therapeutic response of tumours to dietary serine and glycine starvation. Nature. 2017;544(7650):372–6. https://doi.org/10.1038/nature22056.

    Article  CAS  PubMed  Google Scholar 

  24. Nakai T, Nakagawa N, Maoka N, Masui R, Kuramitsu S, Kamiya N. Structure of P-protein of the glycine cleavage system: implications for nonketotic hyperglycinemia. EMBO J. 2005;24(8):1523–36. https://doi.org/10.1038/sj.emboj.7600632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kume A, Koyata H, Sakakibara T, Ishiguro Y, Kure S, Hiraga K. The glycine cleavage system. Molecular cloning of the chicken and human glycine decarboxylase cDNAs and some characteristics involved in the deduced protein structures. J Biol Chem. 1991;266(5):3323–9.

    Article  CAS  PubMed  Google Scholar 

  26. Hiraga K, Kikuchi G. The mitochondrial glycine cleavage system. Functional association of glycine decarboxylase and aminomethyl carrier protein. J Biol Chem. 1980;255(24):11671–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (grant numbers 82122075; 82074232; 82030118; 82004131; 81830120), Shanghai Frontier Research Base of Disease and Syndrome Biology of Inflammatory Cancer Trans-formation (2021KJ03-12), “Shu Guang” project supported by Shanghai Municipal Education Commission and Shanghai Education Development Foundation (21SG43), Three-year Plan Project of Shanghai Traditional Chinese Medicine(ZY(2021–2023)-0208), Clinical Research Plan of SHDC (SHDC2020CR4043), and Shanghai Youth Talent Support Program.

Author information

Authors and Affiliations

Authors

Contributions

HY and XH conceived and designed the study. HY and JW analyzed the data. HY and YZ drafted the paper. XH, YW, and HZ revised the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Yan Wang or Huirong Zhu.

Ethics declarations

Competing interest

The authors declare that there are no conflicts of interest.

Ethical approval

All animal experimental studies have been approved by the Animal Ethics Committee of Shanghai University of Traditional Chinese Medicine (PZSHUTCM210913009).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, H., Hu, X., Zhang, Y. et al. GLDC promotes colorectal cancer metastasis through epithelial–mesenchymal transition mediated by Hippo signaling pathway. Med Oncol 40, 293 (2023). https://doi.org/10.1007/s12032-023-02076-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-023-02076-9

Keywords

Navigation