Skip to main content

Advertisement

Log in

Heat shock factor 1 is a promising therapeutic target against adult T-cell leukemia

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Patients with adult T-cell leukemia (ATL), which is caused by human T-cell leukemia virus type 1 (HTLV-1), show poor prognosis because of drug resistance. Heat shock protein (HSP) 90 is reportedly essential for ATL cell survival as it regulates important signaling pathways, thereby making HSP90 inhibitors new therapeutic candidates for ATL. However, HSP90 inhibition increases the expression of other HSPs, suggesting that HSPs may contribute to drug resistance. The heat shock factor 1 (HSF1) transcription factor is the primary regulator of the expression of HSPs. Furthermore, targeting HSF1 disrupts the HSP90 chaperone function. Herein, we demonstrated that HSF1 is overexpressed in HTLV-1-infected T cells. HSF1 knockdown inhibited the proliferation of HTLV-1-infected T cells. HSF1 inhibitor KRIBB11 reduced the expression and phosphorylation of HSF1, downregulated HSP70 and HSP27 expression, and suppressed Akt, nuclear factor-κB, and AP-1 signals. KRIBB11 treatment induced DNA damage, upregulated p53 and p21, and reduced the expression of cyclin D2/E, CDK2/4, c-Myc, MDM2, and β-catenin, thereby preventing retinoblastoma protein phosphorylation and inhibiting G1-S cell cycle progression. KRIBB11 also induced caspase-mediated apoptosis concomitant with the suppression of Bcl-xL, Mcl-1, XIAP, c-IAP1/2, and survivin expression. KRIBB11 inhibited HSP70 and HSP90 upregulation through treatment with AUY922, an HSP90 inhibitor, and enhanced the cytotoxic effect of AUY922, suggesting a salvage role of HSF1-dependent HSP induction in response to drug treatment. Finally, treatment of mice with KRIBB11 reduced ATL tumor growth. Therefore, this study provides a strong rationale to target HSF1 and validates the anti-ATL activity of KRIBB11.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data that support the findings of the current study are available from the corresponding author upon reasonable request.

References

  1. Ishitsuka K, Tamura K. Human T-cell leukaemia virus type I and adult T-cell leukaemia-lymphoma. Lancet Oncol. 2014;15:e517–26.

    Article  CAS  PubMed  Google Scholar 

  2. Iwanaga M, Watanabe T, Yamaguchi K. Adult T-cell leukemia: a review of epidemiological evidence. Front Microbiol. 2012;3:322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Tsukasaki K, Marçais A, Nasr R, Kato K, Fukuda T, Hermine O, Bazarbachi A. Diagnostic approaches and established treatments for adult T cell leukemia lymphoma. Front Microbiol. 2020;11:1207.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Kurop MK, Huyen CM, Kelly JH, Blagg BSJ. The heat shock response and small molecule regulators. Eur J Med Chem. 2021;226: 113846.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ishikawa C, Senba M, Mori N. Efficiency of AUY922 in mice with adult T-cell leukemia/lymphoma. Oncol Lett. 2016;12:387–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kurashina R, Ohyashiki JH, Kobayashi C, Hamamura R, Zhang Y, Hirano T, Ohyashiki K. Anti-proliferative activity of heat shock protein (Hsp) 90 inhibitors via beta-catenin/TCF7L2 pathway in adult T cell leukemia cells. Cancer Lett. 2009;284:62–70.

    Article  CAS  PubMed  Google Scholar 

  7. Taniguchi H, Hasegawa H, Sasaki D, Ando K, Sawayama Y, Imanishi D, Taguchi J, Imaizumi Y, Hata T, Tsukasaki K, Uno N, Morinaga Y, Yanagihara K, Miyazaki Y. Heat shock protein 90 inhibitor NVP-AUY922 exerts potent activity against adult T-cell leukemia-lymphoma cells. Cancer Sci. 2014;105:1601–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cyran AM, Zhitkovich A. Heat shock proteins and HSF1 in cancer. Front Oncol. 2022;12: 860320.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Wang G, Cao P, Fan Y, Tan K. Emerging roles of HSF1 in cancer: cellular and molecular episodes. Biochim Biophys Acta Rev Cancer. 2020;1874: 188390.

    Article  CAS  PubMed  Google Scholar 

  10. Yoon YJ, Kim JA, Shin KD, Shin DS, Han YM, Lee YJ, Lee JS, Kwon BM, Han DC. KRIBB11 inhibits HSP70 synthesis through inhibition of heat shock factor 1 function by impairing the recruitment of positive transcription elongation factor b to the hsp70 promoter. J Biol Chem. 2011;286:1737–47.

    Article  CAS  PubMed  Google Scholar 

  11. Zhang C, Ao Z, Seth A, Schlossman SF. A mitochondrial membrane protein defined by a novel monoclonal antibody is preferentially detected in apoptotic cells. J Immunol. 1996;157:3980–7.

    Article  CAS  PubMed  Google Scholar 

  12. Mori N, Prager D. Transactivation of the interleukin-1α promoter by human T-cell leukemia virus type I and type II Tax proteins. Blood. 1996;87:3410–7.

    Article  CAS  PubMed  Google Scholar 

  13. Tomayko MM, Reynolds CP. Determination of subcutaneous tumor size in athymic (nude) mice. Cancer Chemother Pharmacol. 1989;24:148–54.

    Article  CAS  PubMed  Google Scholar 

  14. Ishikawa C, Mori N. Exportin-1 is critical for cell proliferation and survival in adult T cell leukemia. Invest New Drugs. 2022;40:718–27.

    Article  CAS  PubMed  Google Scholar 

  15. Rubin SM, Sage J, Skotheim JM. Integrating old and new paradigms of G1/S control. Mol Cell. 2020;80:183–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Iwanaga R, Ohtani K, Hayashi T, Nakamura M. Molecular mechanism of cell cycle progression induced by the oncogene product Tax of human T-cell leukemia virus type I. Oncogene. 2001;20:2055–67.

    Article  CAS  PubMed  Google Scholar 

  17. Koo N, Sharma AK, Narayan S. Therapeutics targeting p53-MDM2 interaction to induce cancer cell death. Int J Mol Sci. 2022;23:5005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. García-Gutiérrez L, Delgado MD, León J. MYC oncogene contributions to release of cell cycle brakes. Genes. 2019;10:244.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ganguly S, Home T, Yacoub A, Kambhampati S, Shi H, Dandawate P, Padhye S, Saluja AK, McGuirk J, Rao R. Targeting HSF1 disrupts HSP90 chaperone function in chronic lymphocytic leukemia. Oncotarget. 2015;6:31767–79.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Manandhar S, Kabekkodu SP, Pai KSR. Aberrant canonical Wnt signaling: phytochemical based modulation. Phytomedicine. 2020;76: 153243.

    Article  CAS  PubMed  Google Scholar 

  21. Augello G, Emma MR, Cusimano A, Azzolina A, Mongiovì S, Puleio R, Cassata G, Gulino A, Belmonte B, Gramignoli R, Strom SC, McCubrey JA, Montalto G, Cervello M. Targeting HSP90 with the small molecule inhibitor AUY922 (luminespib) as a treatment strategy against hepatocellular carcinoma. Int J Cancer. 2019;144:2613–24.

    Article  CAS  PubMed  Google Scholar 

  22. Gazon H, Barbeau B, Mesnard J-M, Peloponese J-M Jr. Hijacking of the AP-1 signaling pathway during development of ATL. Front Microbiol. 2018;8:2686.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ishikawa C, Senba M, Mori N. Importin β1 regulates cell growth and survival during adult T cell leukemia/lymphoma therapy. Invest New Drugs. 2021;39:317–29.

    Article  CAS  PubMed  Google Scholar 

  24. Nakayama T, Hieshima K, Arao T, Jin Z, Nagakubo D, Shirakawa AK, Yamada Y, Fujii M, Oiso N, Kawada A, Nishio K, Yoshie O. Aberrant expression of Fra-2 promotes CCR4 expression and cell proliferation in adult T-cell leukemia. Oncogene. 2008;27:3221–32.

    Article  CAS  PubMed  Google Scholar 

  25. Zhang J, Li H, Liu Y, Zhao K, Wei S, Sugarman ET, Liu L, Zhang G. Targeting HSP90 as a novel therapy for cancer: mechanistic insights and translational relevance. Cells. 2022;11:2778.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cesa LC, Shao H, Srinivasan SR, Tse E, Jain C, Zuiderweg ERP, Southworth DR, Mapp AK, Gestwicki JE. X-linked inhibitor of apoptosis protein (XIAP) is a client of heat shock protein 70 (Hsp70) and a biomarker of its inhibition. J Biol Chem. 2018;293:2370–80.

    Article  CAS  PubMed  Google Scholar 

  27. Kawakami H, Tomita M, Matsuda T, Ohta T, Tanaka Y, Fujii M, Hatano M, Tokuhisa T, Mori N. Transcriptional activation of survivin through the NF-κB pathway by human T-cell leukemia virus type I tax. Int J Cancer. 2005;115:967–74.

    Article  CAS  PubMed  Google Scholar 

  28. Pahl HL. Activators and target genes of Rel/NF-κB transcription factors. Oncogene. 1999;18:6853–66.

    Article  CAS  PubMed  Google Scholar 

  29. Reuter S, Prasad S, Phromnoi K, Ravindran J, Sung B, Yadav VR, Kannappan R, Chaturvedi MM, Aggarwal BB. Thiocolchicoside exhibits anticancer effects through downregulation of NF-κB pathway and its regulated gene products linked to inflammation and cancer. Cancer Prev Res. 2010;3:1462–72.

    Article  CAS  Google Scholar 

  30. Wang C-Y, Mayo MW, Korneluk RG, Goeddel DV, Baldwin AS Jr. NF-κB antiapoptosis: induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8 activation. Science. 1998;281:1680–3.

    Article  CAS  PubMed  Google Scholar 

  31. Zheng H-C. The molecular mechanisms of chemoresistance in cancers. Oncotarget. 2017;8:59950–64.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Mitsiades N, Mitsiades CS, Poulaki V, Chauhan D, Fanourakis G, Gu X, Bailey C, Joseph M, Libermann TA, Treon SP, Munshi NC, Richardson PG, Hideshima T, Anderson KC. Molecular sequelae of proteasome inhibition in human multiple myeloma cells. Proc Natl Acad Sci USA. 2002;99:14374–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Neckers L, Workman P. Hsp90 molecular chaperone inhibitors: are we there yet? Clin Cancer Res. 2012;18:64–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Stühmer T, Zöllinger A, Siegmund D, Chatterjee M, Grella E, Knop S, Kortüm M, Unzicker C, Jensen MR, Quadt C, Chène P, Schoepfer J, García-Echeverría C, Einsele H, Wajant H, Bargou RC. Signalling profile and antitumour activity of the novel Hsp90 inhibitor NVP-AUY922 in multiple myeloma. Leukemia. 2008;22:1604–12.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to the Fujisaki Cell Center, Hayashibara Biochemical Laboratories, Inc. for providing the HUT-102 and MT-1 cells, Dr. Naoki Yamamoto (Tokyo Medical and Dental University) for providing the MT-2 and MT-4 cells, Dr. Masahiro Fujii (Niigata University) for providing the TL-OmI cells, and Dr. Diane Prager (UCLA School of Medicine) for providing the SLB-1 cells. We would also like to thank the University of the Ryukyus Center for Research Advancement and Collaboration, where the protein concentration assessments and flow cytometric analyses were performed. We would like to thank Editage (www.editage.com) for their assistance with English language editing.

Funding

This work was supported by the JSPS KAKENHI [Grant number 17K07175].

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. Material preparation, data collection, experimental work, and analysis were performed by Chie Ishikawa and Naoki Mori. The first draft of the manuscript was written by Chie Ishikawa, and Naoki Mori commented on previous versions of the manuscript. All authors consented to the publication of this study.

Corresponding author

Correspondence to Naoki Mori.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have influenced the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

12032_2023_2042_MOESM1_ESM.tiff

Supplementary file1 Fig. S1. Effect of serum deprivation and KRIBB11 treatment on cell cycle progression and apoptosis of HTLV-1-infected T cells. Cell cycle analysis following PI staining of cells after 48 h culture in basal medium without serum. Following serum starvation, cells were cultured for 48 h in standard conditions with or without 12.5 μM KRIBB11. The results are shown as the mean values of the percentage of cells in G1 relative to the percentage in the S phase (a) and the mean values of the percentage of cells in the sub-G1 phase (b). Data are presented as mean ± SD from triplicate cultures. *P < 0.005, compared with control. (TIFF 10256 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishikawa, C., Mori, N. Heat shock factor 1 is a promising therapeutic target against adult T-cell leukemia. Med Oncol 40, 172 (2023). https://doi.org/10.1007/s12032-023-02042-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-023-02042-5

Keywords

Navigation