Skip to main content

Advertisement

Log in

Breast tumor metastasis following filgrastim administration due to the SDF-1/CXCR4 pathway

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Filgrastim, a recombinant type of granulocyte-colony stimulating factor (G-CSF), has a high potential to manage chemotherapy-induced leukopenia. It can increase stromal cell-derived factor 1 (SDF-1) which may stimulate C-X-C chemokine receptor type 4 (CXCR4) to migrate bone marrow-derived stem/progenitor cells to the bloodstream. Here, we aimed to investigate in vitro and in vivo effects of filgrastim on cell migration, invasion, and metastasis. A lentivirus vector of the anti-CXCR4 receptor was first used for the CXCR4 knockout. Effects of filgrastim on cell proliferation and migration were then investigated on 4T1 cells by Transwell migration and wound healing assay. At last, the effects of filgrastim on cell metastasis and the possible involved mechanisms have been investigated in a metastatic murine breast tumor. The knockout of the CXCR4 receptor could lead to a decrease in cell proliferation, migration, and invasion of the 4T1 cells. Filgrastim could directly target SDF-1 and upregulate the expression of the CXCR4 receptor. The knockout of the CXCR4 receptor reduced cell metastasis in an animal model of breast cancer. CXCR4 receptor stimulation by the filgrastim-affected pathways is a conserved evolutionary response that could increase cancer cell proliferation and consequent cell metastasis. Our results suggest that the activation of the CXCR4 receptor is a conserved evolutionary response that can increase cell proliferation, migration, and consequent metastasis. It seems that filgrastim may increase the chance of cancer cell metastasis in people continuously receiving it to increase the number of neutrophils.

Graphical Abstract

Filgrastim induces the SDF-1/CXCR4 axis on tumor cell growth. SDF-1 and its receptor CXCR4 are vital targets for filgrastim. The CXCR4 can stimulate the PI3K/AKT, NF-κB, and JAK/STAT signaling pathways. The SDF-1/CXCR4 pathway promotes cell chemotaxis and proliferation via MAPKs signaling. It also enhances cell survival, proliferation, and angiogenesis, increasing tumor cell metastasis. The STAT3-mediated inflammation is essential for tumorigenesis processes, and Akt, Wnt, STAT3, and CXCR4 signaling pathways are all correlated. CXCR4 = C-X-C chemokine receptor type 4, SDF-1 = stromal-derived-factor-1, MAPK = mitogen activated protein kinase; NF-κB = nuclear factor-κB, PI3K = phosphoinositide 3-kinase, JAK = Janus kinase, STAT = signal transducer and activator of transcription, PLC = phospholipase C, PKC = Protein kinase C, GRK = G protein-coupled receptor kinase

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7A
Fig. 8

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author, AMA, upon reasonable request.

References

  1. Mehta HM, Malandra M, Corey SJ. G-csf and gm-csf in neutropenia. J Immunol. 2015;195(4):1341–9. https://doi.org/10.4049/jimmunol.1500861.

    Article  CAS  Google Scholar 

  2. Mehta H, Futami M, Glaubach T, Lee D, Andolina J, Yang Q, Whichard Z, Quinn M, Lu H, Kao W. Alternatively spliced, truncated GCSF receptor promotes leukemogenic properties and sensitivity to JAK inhibition. Leukemia. 2014;28(5):1041–51. https://doi.org/10.1038/leu.2013.321.

    Article  CAS  Google Scholar 

  3. Teicher BA, Fricker SP. CXCL12 (SDF-1)/CXCR4 pathway in cancer. Clin Cancer Res. 2010;16(11):2927–31. https://doi.org/10.1158/1078-0432.CCR-09-2329.

    Article  CAS  Google Scholar 

  4. Hamilton JA, Achuthan A. Colony stimulating factors and myeloid cell biology in health and disease. Trends Immunol. 2013;34(2):81–9. https://doi.org/10.1016/j.it.2012.08.006.

    Article  CAS  Google Scholar 

  5. Semerad CL, Liu F, Gregory AD, Stumpf K, Link DC. G-CSF is an essential regulator of neutrophil trafficking from the bone marrow to the blood. Immunity. 2002;17(4):413–23. https://doi.org/10.1016/s1074-7613(02)00424-7.

    Article  CAS  Google Scholar 

  6. Petit I, Szyper-Kravitz M, Nagler A, Lahav M, Peled A, Habler L, Ponomaryov T, Taichman RS, Arenzana-Seisdedos F, Fujii N, Sandbank J, Zipori D, Lapidot T. G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4. Nat Immunol. 2002;3(7):687–94. https://doi.org/10.1038/ni813.

    Article  CAS  Google Scholar 

  7. Kucia M, Reca R, Miekus K, Wanzeck J, Wojakowski W, Janowska-Wieczorek A, Ratajczak J, Ratajczak MZ. Trafficking of normal stem cells and metastasis of cancer stem cells involve similar mechanisms: pivotal role of the SDF-1-CXCR4 axis. Stem Cells. 2005;23(7):879–94. https://doi.org/10.1634/stemcells.2004-0342.

    Article  CAS  Google Scholar 

  8. To LB, Levesque J-P, Herbert KE. How I treat patients who mobilize hematopoietic stem cells poorly. Blood. 2011;118(17):4530–40. https://doi.org/10.1182/blood-2011-06-318220.

    Article  CAS  Google Scholar 

  9. Brugger W, Bross KJ, Glatt M, Weber F, Mertelsmann R, Kanz L. Mobilization of tumor cells and hematopoietic progenitor cells into peripheral blood of patients with solid tumors. Blood. 1994;83(3):636–40. https://doi.org/10.1182/blood.V83.3.636.636.

    Article  CAS  Google Scholar 

  10. Swierczak A, Cook AD, Lenzo JC, Restall CM, Doherty JP, Anderson RL, Hamilton JA. The promotion of breast cancer metastasis caused by inhibition of CSF-1R/CSF-1 signaling is blocked by targeting the G-CSF receptor. Cancer Immunol Res. 2014;2(8):765–76. https://doi.org/10.1158/2326-6066.CIR-13-0190.

    Article  CAS  Google Scholar 

  11. Krohn A, Song Y-H, Muehlberg F, Droll L, Beckmann C, Alt E. CXCR4 receptor positive spheroid forming cells are responsible for tumor invasion in vitro. Cancer lett. 2006;280(1):65–71. https://doi.org/10.1016/j.canlet.2009.02.005.

    Article  CAS  Google Scholar 

  12. Michiels F, Van Der Kammen RA, Janssen L, Nolan G, Collard JG. Expression of Rho GTPases using retroviral vectors. Methods Enzymol. 2000;325:295–302. https://doi.org/10.1016/s0076-6879(00)25451-7.

    Article  CAS  Google Scholar 

  13. Kinsella TM, Nolan GP. Episomal vectors rapidly and stably produce high-titer recombinant retrovirus. Hum Gene Ther. 1996;7(12):1405–13. https://doi.org/10.1089/hum.1996.7.12-1405.

    Article  CAS  Google Scholar 

  14. Zeelenberg IS, Ruuls-Van Stalle L, Roos E. Retention of CXCR4 in the endoplasmic reticulum blocks dissemination of a T cell hybridoma. J Clin Invest. 2001;108(2):269–77. https://doi.org/10.1172/JCI11330.

    Article  CAS  Google Scholar 

  15. Khori V, Alizadeh AM, Khalighfard S, Heidarian Y, Khodayari H. Oxytocin effects on the inhibition of the NF-κB/miR195 pathway in mice breast cancer. Peptides. 2018;107:54–60. https://doi.org/10.1016/j.peptides.

    Article  CAS  Google Scholar 

  16. Saba F, Soleimani M, Kaviani S, Abroun S, Sayyadipoor F, Behrouz S, Saki N. G-CSF induces up-regulation of CXCR4 expression in human hematopoietic stem cells by beta-adrenergic agonist. Hematology. 2015;20(8):462–8. https://doi.org/10.1179/1607845414Y.0000000220.

    Article  CAS  Google Scholar 

  17. Andergassen U, Vogl A, Mumm J-N, Koelbl AC, Hutter S, Rack B, Friese K, Jeschke U. Immunocytochemical characterization of disseminated tumour cells from bone marrow of breast cancer patients. Anticancer Res. 2016;36(6):3217–22.

    CAS  Google Scholar 

  18. Kim JS, Son Y, Bae MJ, Lee M, Lee CG, Jo WS, Kim SD, Yang K. Administration of granulocyte colony-stimulating factor with radiotherapy promotes tumor growth by stimulating vascularization in tumor-bearing mice. Oncol Rep. 2015;34(1):147–54. https://doi.org/10.3892/or.2015.3977.

    Article  CAS  Google Scholar 

  19. Soleymani M, Khalighfard S, Khodayari S, Khodayari H, Kalhori MR, Hadjighassem MR, Shaterabadi Z, Alizadeh AM. Effects of multiple injections on the efficacy and cytotoxicity of folate-targeted magnetite nanoparticles as theranostic agents for MRI detection and magnetic hyperthermia therapy of tumor cells. Sci Rep. 2020;10(1):1–14. https://doi.org/10.1038/s41598-020-58605-3.

    Article  CAS  Google Scholar 

  20. Gazitt Y, Liu Q. Plasma levels of SDF-1 and expression of SDF-1 receptor on CD34+ cells in mobilized peripheral blood of non-Hodgkin’s lymphoma patients. Stem cells. 2001;19(1):37–45. https://doi.org/10.1634/stemcells.19-1-37.

    Article  CAS  Google Scholar 

  21. Alizadeh AM, Afrouzan H, Dinparast-Djadid N, Sawaya ACF, Azizian S, Hemmati HR, Mohagheghi MA, Erfani S. Chemoprotection of MNNG-initiated gastric cancer in rats using Iranian propolis. Arch Iran Med. 2015;18(1):18–23.

    Google Scholar 

  22. Crawford J, Ozer H, Stoller R, Johnson D, Lyman G, Tabbara I, Kris M, Grous J, Picozzi V, Rausch G. Reduction by granulocyte colony-stimulating factor of fever and neutropenia induced by chemotherapy in patients with small-cell lung cancer. N Engl J Med. 1991;325(3):164–70. https://doi.org/10.1056/NEJM199107183250305.

    Article  CAS  Google Scholar 

  23. Mohsenikia M, Alizadeh AM, Khodayari S, Khodayari H, Karimi A, Zamani M, Azizian S, Mohagheghi MA. The protective and therapeutic effects of alpha-solanine on mice breast cancer. Eur J Pharmacol. 2013;718(1–3):1–9. https://doi.org/10.1016/j.ejphar.2013.09.015.

    Article  CAS  Google Scholar 

  24. Kozuka T, Ishimaru F, Fujii K, Masuda K, Kaneda K, Imai T, Fujii N, Ishikura H, Hongo S, Watanabe T. Plasma stromal cell-derived factor-1 during granulocyte colony-stimulating factor-induced peripheral blood stem cell mobilization. Bone Marrow Transplant. 2003;31(8):651–4. https://doi.org/10.1038/sj.bmt.1703901.

    Article  CAS  Google Scholar 

  25. Bass AJ, Wang TC. An inflammatory situation: SOX2 and STAT3 cooperate in squamous cell carcinoma initiation. Cell Stem Cell. 2013;12(3):266–8. https://doi.org/10.1016/j.stem.2013.02.004.

    Article  CAS  Google Scholar 

  26. Baumgart S, Chen N-M, Siveke JT, König A, Zhang J-S, Singh SK, Wolf E, Bartkuhn M, Esposito I, Heßmann E. Inflammation-Induced NFATc1–STAT3 transcription complex promotes pancreatic cancer initiation by KrasG12D. Cancer Discov. 2014;4(6):688–701. https://doi.org/10.1158/2159-8290.CD-13-0593.

    Article  CAS  Google Scholar 

  27. Kubota Y, Takubo K, Shimizu T, Ohno H, Kishi K, Shibuya M, Saya H, Suda T. M-CSF inhibition selectively targets pathological angiogenesis and lymphangiogenesis. J Exp Med. 2009;206(5):1089–102. https://doi.org/10.1084/jem.20081605.

    Article  CAS  Google Scholar 

  28. Fend L, Accart N, Kintz J, Cochin S, Reymann C, Le Pogam F, Marchand J-B, Menguy T, Slos P, Rooke R. Therapeutic effects of anti-CD115 monoclonal antibody in mouse cancer models through dual inhibition of tumor-associated macrophages and osteoclasts. PloS one. 2013;8(9):e73310. https://doi.org/10.1371/journal.pone.0073310.

    Article  CAS  Google Scholar 

  29. Yan HH, Pickup M, Pang Y, Gorska AE, Li Z, Chytil A, Geng Y, Gray JW, Moses HL, Yang L. Gr-1+ CD11b+ myeloid cells tip the balance of immune protection to tumor promotion in the premetastatic lung. Cancer Res. 2010;70(15):6139–49. https://doi.org/10.1158/0008-5472.CAN-10-0706.

    Article  CAS  Google Scholar 

  30. Kowanetz M, Wu X, Lee J, Tan M, Hagenbeek T, Qu X, Yu L, Ross J, Korsisaari N, Cao T. Granulocyte-colony stimulating factor promotes lung metastasis through mobilization of Ly6G+ Ly6C+ granulocytes. Proc Natl Acad Sci USA. 2010;107(50):21248–55. https://doi.org/10.1073/pnas.1015855107.

    Article  Google Scholar 

  31. DeNardo DG, Brennan DJ, Rexhepaj E, Ruffell B, Shiao SL, Madden SF, Gallagher WM, Wadhwani N, Keil SD, Junaid SA. Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy. Cancer Discov. 2011;1(1):54–67. https://doi.org/10.1158/2159-8274.CD-10-0028.

    Article  CAS  Google Scholar 

  32. Mantovani A. The yin-yang of tumor-associated neutrophils. Cancer Cell. 2009;16(3):173–4. https://doi.org/10.1016/j.ccr.2009.08.014.

    Article  CAS  Google Scholar 

  33. Granot Z, Henke E, Comen EA, King TA, Norton L, Benezra R. Tumor entrained neutrophils inhibit seeding in the premetastatic lung. Cancer Cell. 2011;20(3):300–14. https://doi.org/10.1016/j.ccr.2011.08.012.

    Article  CAS  Google Scholar 

  34. Pyonteck SM, Akkari L, Schuhmacher AJ, Bowman RL, Sevenich L, Quail DF, Olson OC, Quick ML, Huse JT, Teijeiro V. CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nat Med. 2013;19(10):1264–72. https://doi.org/10.1038/nm.3337.

    Article  CAS  Google Scholar 

  35. Aharinejad S, Salama M, Paulus P, Zins K, Berger A, Singer CF. Elevated CSF1 serum concentration predicts poor overall survival in women with early breast cancer. Endocr Relat Cancer. 2013;20(6):777–83. https://doi.org/10.1530/ERC-13-0198.

    Article  CAS  Google Scholar 

  36. Dale DC, Crawford J, Klippel Z, Reiner M, Osslund T, Fan E, Morrow PK, Allcott K, Lyman GH. A systematic literature review of the efficacy, effectiveness, and safety of filgrastim. Support Care Cancer. 2018;26(1):7–20. https://doi.org/10.1007/s00520-017-3854-x.

    Article  Google Scholar 

  37. Dale DC, Bolyard AA, Shannon JA IV, Connelly JA, Link DC, Bonilla MA, Newburger PE. Outcomes for patients with severe chronic neutropenia treated with granulocyte colony-stimulating factor. Blood Adv. 2022;6(13):3861–9. https://doi.org/10.1182/bloodadvances.2021005684.

    Article  CAS  Google Scholar 

  38. Aravindan BK, Prabhakar J, Somanathan T, Subhadra L. The role of chemokine receptor 4 and its ligand stromal cell derived factor 1 in breast cancer. Ann Transl Med. 2015;3(2):23. https://doi.org/10.3978/j.issn.2305-5839.2014.12.13.

    Article  CAS  Google Scholar 

  39. Huynh D, Akçora D, Malaterre J, Chan CK, Dai X-M, Bertoncello I, Stanley ER, Ramsay RG. CSF-1 receptor-dependent colon development, homeostasis and inflammatory stress response. PloS One. 2013;8(2):e56951. https://doi.org/10.1371/journal.pone.0056951.

    Article  CAS  Google Scholar 

  40. Rajapakse D, Chen M, Curtis TM, Xu H. PKCζ-dependent upregulation of p27kip1 contributes to oxidative stress induced retinal pigment epithelial cell multinucleation. Aging (Albany NY). 2017;9(10):2052–68. https://doi.org/10.18632/aging.101299.

    Article  CAS  Google Scholar 

  41. Jiang C, Gong W, Chen R, Ke H, Qu X, Yang W, Cheng Z. RhoA/ROCK/ARHGAP26 signaling in the eutopic and ectopic endometrium is involved in clinical characteristics of adenomyosis. J Int Med Res. 2018;46(12):5019–29. https://doi.org/10.1177/0300060518789038.

    Article  CAS  Google Scholar 

  42. Alge-Priglinger CS, Kreutzer T, Obholzer K, Wolf A, Mempel M, Kernt M, Kampik A, Priglinger SG. Oxidative stress-mediated induction of MMP-1 and MMP-3 in human RPE cells. Invest Ophthalmol Vis Sci. 2009;50(11):5495–503. https://doi.org/10.1167/iovs.08-3193.

    Article  Google Scholar 

  43. Jia Y, Liu D, Xiao D, Ma X, Han S, Zheng Y, Sun S, Zhang M, Gao H, Cui X. Expression of AFP and STAT3 is involved in arsenic trioxide-induced apoptosis and inhibition of proliferation in AFP-producing gastric cancer cells. PLoS One. 2013;8(1):e54774. https://doi.org/10.1371/journal.pone.0054774.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by the Tehran University of Medical Sciences (grant number: 34686). We are also grateful for the financial support from the Iran National Science Foundation (INSF) (Grant number: 96011965).

Funding

None of the funding sources had any role in the study design; the collection, analysis, and interpretation of data; the writing of the report; or the decision to submit the article for publication. Tehran University of Medical Sciences and Health Services,34686,Ali Mohammad Alizadeh

Author information

Authors and Affiliations

Authors

Contributions

SK: data analysis, sample processing, and manuscript preparation. VK and EE: sample processing. FA, TA, AP, and SS: sample processing and manuscript revision. SK and HK: study concept and design. MRK: sample collection and processing. PK: manuscript preparation. AMA: study conception and design, sample processing, and manuscript revision.

Corresponding author

Correspondence to Ali Mohammad Alizadeh.

Ethics declarations

Conflict of interest

The authors whose names are listed immediately below certify that they have NO affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers’ bureaus; membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent-licensing arrangements), or non-financial interest (such as personal or professional relationships, affiliations, knowledge or beliefs) in the subject matter or materials discussed in this manuscript.

Ethical approval

All procedures performed in studies involving animals were under the ethical standards of the institutional and national research committee with the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalighfard, S., Khori, V., Esmati, E. et al. Breast tumor metastasis following filgrastim administration due to the SDF-1/CXCR4 pathway. Med Oncol 40, 74 (2023). https://doi.org/10.1007/s12032-022-01935-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-022-01935-1

Keywords

Navigation