Skip to main content

Advertisement

Log in

Myricetin-induced apoptosis in triple-negative breast cancer cells through inhibition of the PI3K/Akt/mTOR pathway

  • Review Article
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Breast cancer is still a severe origin of malignant demise in females, and its prevalence is rising worldwide. Triple-negative breast cancer (TNBC) is a diversified aggressive breast tumor distinguished by inadequate prognosis, early recurrence, high invasion, and extremely metastasized disease. Chemotherapy is being used to treat it; however, it has low efficacy. On the other hand, with the growing number of corroborations on subtypes of TNBC and molecular biology of tumors, significant advancement in TNBC targeted treatment has been made. Myricetin (MYR), a polyhydroxyflavonol compound widely found in nature, has been shown to possess anticancer effects in various cancers. Though, the mechanisms and impacts of MYR on metastasis of TNBC remain unclear. Early and late apoptotic cell death and cell proliferation inhibition were observed in MYR-treated TNBC cells. MYR modulated cell cycle, pro-angiogenic, and invasion effects via the mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K)/Protein kinase B (PKB/also known as AKT) signaling pathways. Moreover, it regulates the expression of MAPK, PI3K/AKT/mTOR, IκB/NF-κB, Hippo, STAT3, GSK-3β, Nrf2/HO-1, TLR, eNOS / NO, ACE, and AChE. Here, we review the anticancer effects of MYR for TNBC and target the PI3K/AKT/mTOR pathway as a therapeutic target for the fruitful treatment of TNBC to summarize MYR's therapeutic potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Alipour S, Omranipour R, Jahanzad I, Bagheri K. Very young breast cancer in a referral center in Tehran, Iran: review of 55 cases aged 25 or less throughout 33 years. Asian Pac J Cancer Prev. 2014;14:6529–32.

    Article  PubMed  Google Scholar 

  2. Tao Z, Shi A, Lu C, Song T, Zhang Z, Zhao J. Breast cancer: epidemiology and etiology. Cell Biochem Biophys. 2015;72:333–8.

    Article  PubMed  CAS  Google Scholar 

  3. da Costa Vieira RA, Biller G, Uemura G, Ruiz CA, Curado MP. Breast cancer screening in developing countries. Clinics. 2017;72:244–53.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Perou CM, Sørlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, Pollack JR, Ross DT, Johnsen H, Akslen LA, Fluge O, Pergamenschikov A, Williams C, Zhu SX, Lønning PE, Børresen-Dale AL, Brown PO, Botstein D. Molecular portraits of human breast tumours. Nature. 2000;406:747–52.

    Article  PubMed  CAS  Google Scholar 

  5. Rhee J, Han SW, Oh DY, Kim JH, Im SA, Han W, Park IA, Noh DY, Bang YJ, Kim TY. The clinicopathologic characteristics and prognostic significance of triple-negativity in node-negative breast cancer. BMC Cancer. 2008;8:307.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Knickle A, Fernando W, Greenshields AL, Rupasinghe HPV, Hoskin DW. Myricetin-induced apoptosis of triple-negative breast cancer cells is mediated by the iron-dependent generation of reactive oxygen species from hydrogen peroxide. Food Chem Toxicol. 2018. https://doi.org/10.1016/j.fct.2018.05.005.

    Article  PubMed  Google Scholar 

  7. Tessari A, Palmieri D, Di Cosimo S. Overview of diagnostic/targeted treatment combinations in personalized medicine for breast cancer patients. Pharmgenomics Pers Med. 2013;7:1–19.

    PubMed  PubMed Central  Google Scholar 

  8. Chavez KJ, Garimella SV, Lipkowitz S. Triple negative breast cancer cell lines: one tool in the search for better treatment of triple-negative breast cancer. Breast Dis. 2010;32(1–2):35–48.

    PubMed  PubMed Central  Google Scholar 

  9. Khan MA, Jain VK, Rizwanullah M, Ahmad J, Jain K. PI3K/AKT/mTOR pathway inhibitors in triple-negative breast cancer: a review on drug discovery and future challenges. Drug Discov Today. 2019;24(11):2181–91.

    Article  PubMed  CAS  Google Scholar 

  10. Amin ARMR, Kucuk O, Khuri FD, Shin DM. Perspectives for cancer prevention with natural compounds. J Clin Oncol. 2009;27:2712–25.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Singh S, Sharma B, Kanwar SS, Kumar A. Lead phytochemicals for anticancer drug development. Front Plant Sci. 2016;7:1667.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Imran M, Saeed F, Hussain G, Imran A, Mehmood Z, Gondal TA, et al. Myricetin: a comprehensive review on its biological potentials. Food Sci Nutr. 2021;9:1–15.

    Article  Google Scholar 

  13. Sak K. Cytotoxicity of dietary flavonoids on different human cancer types. Pharmacogn Rev. 2014;8:122–46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Zhu ML, Zhang PM, Jiang M, Yu SW, Wang L. Myricetin induces apoptosis and autophagy by inhibiting PI3K/Akt/mTOR signalling in human colon cancer cells. BMC Complement Med Ther. 2020;20:209.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Felice MR, Maugeri A, De Sarro G, Navarra M, Barreca D. Molecular pathways involved in the anti-cancer activity of flavonols: a focus on myricetin and kaempferol. Int J Mol Sci. 2022;23(8):4411.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Kumar P, Aggarwal R. An overview of triple-negative breast cancer. Arch Gynecol Obstet. 2016;293:247–69.

    Article  PubMed  CAS  Google Scholar 

  17. Perou CM. Molecular stratification of triple-negative breast cancers. Oncologist. 2011;16(Suppl 1):61–70.

    Article  PubMed  Google Scholar 

  18. Yin L, Duan JJ, Bian XW, et al. Triple-negative breast cancer molecular subtyping and treatment progress. Breast Cancer Res. 2020;22:61.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Aysola K, Desai A, Welch C, Xu J, Qin Y, Reddy V, Matthews R, Owens C, Okoli J, Beech DJ, Piyathilake CJ, Reddy SP, Rao VN. Triple negative breast cancer: an overview. Hereditary Genet. 2013;2013(Suppl 2):001.

    PubMed  PubMed Central  Google Scholar 

  20. Chaudhary LN, Wilkinson KH, Kong A. Triple-negative breast cancer: who should receive neoadjuvant chemotherapy? Surg Oncol Clin N Am. 2018;27(1):141–53.

    Article  PubMed  Google Scholar 

  21. Collignon J, et al. Triple-negative breast cancer: treatment challenges and solutions. Breast Cancer (Dove Med Press). 2016;8:93–107.

    CAS  Google Scholar 

  22. Zughaibi TA, Suhail M, Tarique M, Tabrez S. Targeting PI3K/Akt/mTOR pathway by different flavonoids: a cancer chemopreventive approach. Int J Mol Sci. 2021;22(22):12455.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Morris GJ, et al. Differences in breast carcinoma characteristics in newly diagnosed African-American and Caucasian patients: a single-institution compilation compared with the National Cancer Institute’s Surveillance, Epidemiology, and End Results database. Cancer. 2007;110(4):876–84.

    Article  PubMed  Google Scholar 

  24. Lin NU, et al. Sites of distant recurrence and clinical outcomes in patients with metastatic triple-negative breast cancer: high incidence of central nervous system metastases. Cancer. 2008;113(10):2638–45.

    Article  PubMed  Google Scholar 

  25. Dent R, et al. Triple-negative breast cancer: clinical features and patterns of recurrence. Clin Cancer Res. 2007;13(15 Pt 1):4429–34.

    Article  PubMed  Google Scholar 

  26. Zhang L, et al. Androgen receptor, EGFR, and BRCA1 as biomarkers in triple-negative breast cancer: a meta-analysis. Biomed Res Int. 2015;2015: 357485.

    PubMed  PubMed Central  Google Scholar 

  27. Yam C, Mani SA, Moulder SL. Targeting the molecular subtypes of triple negative breast cancer: understanding the diversity to progress the field. Oncologist. 2017;22(9):1086–93.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Hennessy BT, Gonzalez-Angulo AM, Stemke-Hale K, et al. Characterization of a naturally occurring breast cancer subset enriched in epithelial-to-mesenchymal transition and stem cell characteristics. Cancer Res. 2009;69:4116–24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Lehmann BD, Pietenpol JA. Identification and use of biomarkers in treatment strategies for triple-negative breast cancer subtypes. J Pathol. 2014;232:142–50.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB, Shyr Y, et al. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest. 2011;121:2750–67.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Ahn SG, Kim SJ, Kim C, Jeong J. Molecular classification of triple-negative breast cancer. J Breast Cancer. 2016;19(3):223–30.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Hu XC, Zhang J, Xu BH, Cai L, Ragaz J, Wang ZH, et al. Cisplatin plus gemcitabine versus paclitaxel plus gemcitabine as first-line therapy for metastatic triple-negative breast cancer (CBCSG006): a randomized, open-label, multicentre, phase 3 trial. Lancet Oncol. 2015;16:436–46.

    Article  PubMed  CAS  Google Scholar 

  33. De Soto JA, Wang X, Tominaga Y, Wang RH, Cao L, Qiao W, et al. The inhibition and treatment of breast cancer with poly (ADP-ribose) polymerase (PARP-1) inhibitors. Int J Biol Sci. 2006;2:179–85.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Carey LA, Rugo HS, Marcom PK, Irvin W, Ferraro M, Burrows E, et al. TBCRC 001: EGFR inhibition with cetuximab added to carboplatin in metastatic triple-negative (basal-like) breast cancer. J Clin Oncol. 2008;26:1009.

    Article  Google Scholar 

  35. Gucalp A, Tolaney S, Isakoff SJ, Ingle JN, Liu MC, Carey LA, et al. Phase II trial of bicalutamide in patients with androgen receptor-positive, estrogen receptor-negative metastatic Breast Cancer. Clin Cancer Res. 2013;19:5505–12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Xu J, Prosperi JR, Choudhury N, Olopade OI, Goss KH. β-Catenin is required for the tumorigenic behavior of triple-negative breast cancer cells. PLoS ONE. 2015;10:e0117097.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Basho RK, Gilcrease M, Murthy RK, Helgason T, Karp DD, Albarracin C, et al. Targeting the PI3K/AKT/mTOR pathway for the treatment of mesenchymal triple-negative breast cancer: evidence from a phase 1 trial of mTOR inhibition in combination with liposomal doxorubicin and bevacizumab PI3K/AKT/mTOR pathway for mesenchymal triple-negative breast cancer PI3K/AKT/mTOR pathway for mesenchymal triple-negative breast cancer. JAMA Oncol. 2017;3:509–15.

    Article  PubMed  Google Scholar 

  38. Nanda R, Chow LQM, Dees EC, Berger R, Gupta S, Geva R, et al. Pembrolizumab in patients with advanced triple-negative breast cancer: phase Ib KEYNOTE-012 study. J Clin Oncol. 2016;34:2460–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Owusu-Brackett N, Shariati M, Meric-Bernstam F. Role of PI3K/AKT/mTOR in cancer signaling. In: Badve S, Kumar GL, editors. Predictive biomarkers in oncology: applications in precision medicine. Switzerland: Springer International Publishing; Cham; 2019. p. 263–70.

    Chapter  Google Scholar 

  40. Bruhn MA, Pearson RB, Hannan RD, Sheppard KE. AKT-independent PI3-K signaling in cancer—emerging role for SGK3. Cancer Manag Res. 2013;5:281–92.

    PubMed  PubMed Central  CAS  Google Scholar 

  41. Paplomata E, O’Regan R. The PI3K/AKT/mTOR pathway in breast cancer: targets, trials and biomarkers. Ther Adv Med Oncol. 2014;6:154–66.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Nagini S. Breast cancer: current molecular therapeutic targets and new players. Anticancer Agents Med Chem. 2017;17:152–63.

    Article  PubMed  CAS  Google Scholar 

  43. Mayer IA, Arteaga CL. The PI3K/AKT pathway as a target for cancer treatment. Annu Rev Med. 2016;67:11–28.

    Article  PubMed  CAS  Google Scholar 

  44. Cangemi A, et al. Dietary restriction: could it be considered as speed bump on tumor progression road? Tumour Biol. 2016;37:7109–18.

    Article  PubMed  CAS  Google Scholar 

  45. Agoulnik IU, et al. INPP4B: the new kid on the PI3K block. Oncotarget. 2011;2:321–8.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Han S, Lee J, Woo J, Jung G, Jung S, Han E, Park Y, Kim B, Kim S, Park B, Park B, et al. Myricetin induces apoptosis through the MAPK pathway and regulates JNK mediated autophagy in SK BR 3 cells. Int J Mol Med. 2022;49:54.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Tobin NP, et al. Molecular subtype and tumor characteristics of breast cancer metastases as assessed by gene expression significantly influence patient post-relapse survival. Ann Oncol. 2015;26:81–8.

    Article  PubMed  CAS  Google Scholar 

  48. Bahrami A, et al. The therapeutic potential of PI3K/Akt/mTOR inhibitors in breast cancer: rational and progress. J Cell Biochem. 2018;119:213–22.

    Article  PubMed  CAS  Google Scholar 

  49. Ross JA, Kasum CM. Dietary flavonoids: bioavailability, metabolic effects, and safety. Annu Rev Nutr. 2002;22:19–34.

    Article  PubMed  CAS  Google Scholar 

  50. Kim GD. Myricetin inhibits angiogenesis by inducing apoptosis and suppressing PI3K/Akt/mTOR signaling in endothelial cells. J Cancer Prev. 2017;22:219–27.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Jung SK, Lee KW, Byun S, Kang NJ, Lim SH, Heo YS, Bode AM, Bowden GT, Lee HJ, Dong Z. Myricetin suppresses UVB-induced skin cancer by targeting Fyn. Cancer Res. 2008;68:6021–9.

    Article  PubMed  CAS  Google Scholar 

  52. Huang H, Chen AY, Ye X, Li B, Rojanasakul Y, Rankin GO, Chen YC. Myricetin inhibits proliferation of cisplatin-resistant cancer cells through a p53-dependent apoptotic pathway. Int J Oncol. 2015;47(4):1494–502.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Letai AG. Diagnosing and exploiting cancer’s addiction to blocks in apoptosis. Nat Rev Cancer. 2008;8(2):121–32.

    Article  PubMed  CAS  Google Scholar 

  54. Jiao D, Zhang XD. Myricetin suppresses p21-activated kinase 1 in human breast cancer MCF-7 cells through downstream signaling of the β-catenin pathway. Oncol Rep. 2016;36(1):342–8.

    Article  PubMed  CAS  Google Scholar 

  55. Li Y, Cui SX, Sun SY, Shi WN, Song ZY, Wang SQ, Yu XF, Gao ZH, Qu XJ. Chemoprevention of intestinal tumorigenesis by the natural dietary flavonoid myricetin in APCMin/+ mice. Oncotarget. 2016;7(37):60446–60.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Jin Z, El-Deiry WS. Overview of cell death signalling pathways. J Cancer Biol Ther. 2005;4(2):139–63.

    CAS  Google Scholar 

  57. Siegelin MD, Gaiser T, Habel A, Siegelin Y. Myricetin sensitizes malignant glioma cells to TRAIL-mediated apoptosis by down-regulation of the short isoform of FLIP and bcl-2. Cancer Lett. 2009;283(2):230–8.

    Article  PubMed  CAS  Google Scholar 

  58. Alzahrani AS. PI3K/Akt/mTOR inhibitors in cancer: at the bench and bedside. Semin Cancer Biol. 2019;59:125–32.

    Article  PubMed  CAS  Google Scholar 

  59. Guerrero-Zotano A, Mayer IA, Arteaga CL. PI3K/AKT/mTOR: role in breast cancer progression, drug resistance, and treatment. Cancer Metastasis Rev. 2016;35:515–24.

    Article  PubMed  CAS  Google Scholar 

  60. Verret B, Cortes J, Bachelot T, Andre F, Arnedos M. Efficacy of PI3K inhibitors in advanced breast cancer. Ann Oncol. 2019;30(Suppl. 10):x12–20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Keegan NM, Gleeson JP, Hennessy BT, Morris PG. PI3K inhibition to overcome endocrine resistance in breast cancer. Expert Opin Investig Drugs. 2018;27:1–15.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Authors are thankful to ICMR

Funding

This work was supported by the Indian Council of Medical Research, Grant Number [45/24/2020-Nan-BMS].

Author information

Authors and Affiliations

Authors

Contributions

PS—Conceptualization, methodology, Investigation, Data Curation, Software, validation, Writing, Original Draft, and Writing—Review and editing & Formal analysis. MAK—Resources and Supervision. AKN—Resources and Supervision. SC—Resources and Supervision. MA—Resources & Supervision.

Corresponding author

Correspondence to Mohd Akhtar.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, P., Khan, M.A., Najmi, A.K. et al. Myricetin-induced apoptosis in triple-negative breast cancer cells through inhibition of the PI3K/Akt/mTOR pathway. Med Oncol 39, 248 (2022). https://doi.org/10.1007/s12032-022-01856-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-022-01856-z

Keywords

Navigation