Skip to main content

Advertisement

Log in

MORC2/β-catenin signaling axis promotes proliferation and migration of breast cancer cells

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Although Microrchidia 2 (MORC2) is overexpressed in many types of human cancer, its role in breast cancer progression remains unknown. Here, we report that the chromatin remodeler MORC2 expression positively correlates with β-catenin expression in breast cancer cell lines and patients. Overexpression of MORC2 augmented the expression of β-catenin and its target genes, cyclin D1 and c-Myc. Consistent with these results, we found MORC2 knockdown resulted in decreased expression of β-catenin and its target genes. Surprisingly, we observed that c-Myc, the target gene of β-catenin, regulated the MORC2-β-catenin signaling axis through a feedback mechanism. We demonstrated that MORC2 regulates β-catenin expression and function by modulating the phosphorylation of AKT. In addition, we observed reduced proliferation and migration of MORC2 overexpressing breast cancer cells upon β-catenin inhibition. Overall, our results demonstrate that MORC2 promotes breast cancer cell proliferation and migration by regulating β-catenin signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All the data generated or analyzed during this study is included in this manuscript.

References

  1. Dyba T, Randi G, Bray F, Martos C, Giusti F, Nicholson N, Gavin A, Flego M, Neamtiu L, Dimitrova N, Negrão Carvalho R, Ferlay J, Bettio M. The European cancer burden in 2020: incidence and mortality estimates for 40 countries and 25 major cancers. Eur J Cancer. 2021;157:308–47.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin. 2020;70:7–30.

    Article  PubMed  Google Scholar 

  3. Riggio AI, Varley KE, Welm AL. The lingering mysteries of metastatic recurrence in breast cancer. Br J Cancer. 2020;124:13–26.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Dillekas H, Rogers MS, Straume O. Are 90% of deaths from cancer caused by metastases? Cancer Med. 2019;8:5574–6.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Xu X, Zhang M, Xu F, Jiang S. Wnt signaling in breast cancer: biological mechanisms, challenges and opportunities. Mol Cancer. 2020;19:165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Patel S, Alam A, Pant R, Chattopadhyay S. Wnt signaling and its significance within the tumor microenvironment: novel therapeutic insights. Front Immunol. 2020;10:2872.

    Article  CAS  Google Scholar 

  7. Chocarro-Calvo A, García-Martínez JM, Ardila-González S, De la Vieja A, García-Jiménez C. Glucose-induced β-catenin acetylation enhances Wnt signaling in cancer. Mol Cell. 2013;49:474–86.

    Article  CAS  PubMed  Google Scholar 

  8. Teulière J, Faraldo MM, Deugnier MA, Shtutman M, Ben-Ze’ev A, Thiery JP, Glukhova MA. Targeted activation of beta-catenin signaling in basal mammary epithelial cells affects mammary development and leads to hyperplasia. Development. 2005;132:267–77.

    Article  PubMed  CAS  Google Scholar 

  9. Michaelson JS, Leder P. beta-catenin is a downstream effector of Wnt-mediated tumorigenesis in the mammary gland. Oncogene. 2001;20:5093–9.

    Article  CAS  PubMed  Google Scholar 

  10. Clevers H. Wnt/beta-catenin signaling in development and disease. Cell. 2006;127:469–80.

    Article  CAS  PubMed  Google Scholar 

  11. Crawford HC, Fingleton BM, Rudolph-Owen LA, Goss KJ, Rubinfeld B, Polakis P, Matrisian LM. The metalloproteinase matrilysin is a target of beta-catenin transactivation in intestinal tumors. Oncogene. 1999;18:2883–91.

    Article  CAS  PubMed  Google Scholar 

  12. Polakis P. Wnt signaling and cancer. Genes Dev. 2000;14:1837–51.

    Article  CAS  PubMed  Google Scholar 

  13. Fang D, Hawke D, Zheng Y, Xia Y, Meisenhelder J, Nika H, Mills GB, Kobayashi R, Hunter T, Lu Z. Phosphorylation of beta-catenin by AKT promotes beta-catenin transcriptional activity. J Biol Chem. 2007;282:11221–9.

    Article  CAS  PubMed  Google Scholar 

  14. Wang H, Zhang L, Luo Q, Liu J, Wang G. MORC protein family-related signature within human disease and cancer. Cell Death Dis. 2021;12:1112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang GL, Wang CY, Cai XZ, Chen W, Wang XH, Li F. Identification and expression analysis of a novel CW-type zinc finger protein MORC2 in cancer cells. Anat Rec (Hoboken). 2010;293:1002–9.

    Article  CAS  Google Scholar 

  16. Tong Y, Li Y, Gu H, Wang C, Liu F, Shao Y, Li J, Cao L, Li F. Microchidia protein 2, MORC2, downregulates the cytoskeleton adapter protein, ArgBP2, via histone methylation in gastric cancer cells. Biochem Biophys Res Commun. 2015;467:821–7.

    Article  CAS  PubMed  Google Scholar 

  17. Hong G, Qiu H, Wang C, Jadhav G, Wang H, Tickner J, He W, Xu J. The emerging role of MORC family proteins in cancer development and bone homeostasis. J Cell Physiol. 2016;232:928–34.

    Article  PubMed  CAS  Google Scholar 

  18. Tong Y, Li Y, Gu H, Wang C, Liu F, Shao Y, Li F. HSF1, in association with MORC2, downregulates ArgBP2 via the PRC2 family in gastric cancer cells. Biochim Biophys Acta Mol Basis Dis. 2018;1864:1104–14.

    Article  CAS  PubMed  Google Scholar 

  19. Ding QS, Zhang L, Wang BC, Zeng Z, Zou XQ, Cao PB, Zhou GM, Tang M, Wu L, Wu LL, Yu HG, Guo Y, Zhou FX. Aberrant high expression level of MORC2 is a common character in multiple cancers. Hum Pathol. 2018;76:58–67.

    Article  CAS  PubMed  Google Scholar 

  20. Wang T, Qin ZY, Wen LZ, Guo Y, Liu Q, Lei ZJ, Pan W, Liu KJ, Wang XW, Lai SJ, Sun WJ, Wei YL, Liu L, Guo L, Chen YQ, Wang J, Xiao HL, Bian XW, Chen DF, Wang B. Epigenetic restriction of Hippo signaling by MORC2 underlies stemness of hepatocellular carcinoma cells. Cell Death Differ. 2018;25:2086–100.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Liu M, Sun X, Shi S. MORC2 enhances tumor growth by promoting angiogenesis and tumor-associated macrophage recruitment via Wnt/Î2-catenin in lung cancer. Cell Physiol Biochem. 2018;51:1679–94.

    Article  CAS  PubMed  Google Scholar 

  22. Liao G, Liu X, Wu D, Duan F, Xie X, Wen S, Li Y, Li S. MORC2 promotes cell growth and metastasis in human cholangiocarcinoma and is negatively regulated by miR-186-5p. Aging (Albany NY). 2019;11:3639–49.

    Article  CAS  Google Scholar 

  23. Guddeti RK, Chutani N, Pakala SB. MORC2 interactome: its involvement in metabolism and cancer. Biophys Rev. 2021;13:507–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pan Z, Ding Q, Guo Q, Guo Y, Wu L, Tang M, Yu H, Zhou F. MORC2, a novel oncogene, is upregulated in liver cancer and contributes to proliferation, metastasis and chemoresistance. Int J Oncol. 2018;53:59–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Liu YY, Liu HY, Yu TJ, Lu Q, Zhang FL, Liu GY, Shao ZM, Li DQ. O-GlcNAcylation of MORC2 at threonine 556 by OGT couples TGF-Î2 signaling to breast cancer progression. Cell Death Differ. 2022;29(4):861–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhang Q, Song Y, Chen W, Wang X, Miao Z, Cao L, Li F, Wang G. By recruiting HDAC1, MORC2 suppresses p21 Waf1/Cip1 in gastric cancer. Oncotarget. 2015;6:16461–70.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Wang G, Song Y, Liu T, Wang C, Zhang Q, Liu F, Cai X, Miao Z, Xu H, Cao L, Li F. PAK1-mediated MORC2 phosphorylation promotes gastric tumorigenesis. Oncotarget. 2015;6:9877–86.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Liu HY, Liu YY, Yang F, Zhang L, Zhang FL, Hu X, Shao ZM, Li DQ. Acetylation of MORC2 by NAT10 regulates cell-cycle checkpoint control and resistance to DNA-damaging chemotherapy and radiotherapy in breast cancer. Nucleic Acids Res. 2020;48:3638–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Xie HY, Zhang TM, Hu SY, Shao ZM, Li DQ. Dimerization of MORC2 through its C-terminal coiled-coil domain enhances chromatin dynamics and promotes DNA repair. Cell Commun Signal. 2019;17:160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhang L, Li DQ. MORC2 regulates DNA damage response through a PARP1-dependent pathway. Nucleic Acids Res. 2019;47:8502–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Liao XH, Zhang Y, Dong WJ, Shao ZM, Li DQ. Chromatin remodeling protein MORC2 promotes breast cancer invasion and metastasis through a PRD domain-mediated interaction with CTNND1. Oncotarget. 2017;8:97941–54.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Sánchez-Solana B, Li DQ, Kumar R. Cytosolic functions of MORC2 in lipogenesis and adipogenesis. Biochim Biophys Acta. 2013;1843:316–26.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Guddeti RK, Thomas L, Kannan A, Karyala P, Pakala SB. The chromatin modifier MORC2 affects glucose metabolism by regulating the expression of lactate dehydrogenase A through a feed forward loop with c-Myc. FEBS Lett. 2021;595:1289–302.

    Article  CAS  PubMed  Google Scholar 

  34. Yang F, Xie HY, Yang LF, Zhang L, Zhang FL, Liu HY, Li DQ, Shao ZM. Stabilization of MORC2 by estrogen and antiestrogens through GPER1- PRKACA-CMA pathway contributes to estrogen-induced proliferation and endocrine resistance of breast cancer cells. Autophagy. 2020;16:1061–76.

    Article  CAS  PubMed  Google Scholar 

  35. Albulym OM, Kennerson ML, Harms MB, Drew AP, Siddell AH, Auer-Grumbach M, Pestronk A, Connolly A, Baloh RH, Zuchner S, Reddel SW, Nicholson GA. MORC2 mutations cause axonal Charcot-Marie-Tooth disease with pyramidal signs. Ann Neurol. 2015;79:419–27.

    Article  CAS  Google Scholar 

  36. Laššuthová P, Šafka Brožková D, Krůtová M, Mazanec R, Züchner S, Gonzalez MA, Seeman P. Severe axonal Charcot-Marie-Tooth disease with proximal weakness caused by de novo mutation in the MORC2 gene. Brain. 2016;139:e26.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Tchasovnikarova IA, Timms RT, Douse CH, Roberts RC, Dougan G, Kingston RE, Modis Y, Lehner PJ. Hyperactivation of HUSH complex function by Charcot-Marie-Tooth disease mutation in MORC2. Nat Genet. 2017;49:1035–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sancho P, Bartesaghi L, Miossec O, García-García F, Ramírez-Jiménez L, Siddell A, Åkesson E, Hedlund E, Laššuthová P, Pascual-Pascual SI, Sevilla T, Kennerson M, Lupo V, Chrast R, Espinós C. Characterization of molecular mechanisms underlying the axonal Charcot-Marie-Tooth neuropathy caused by MORC2 mutations. Hum Mol Genet. 2019;28:1629–44.

    Article  CAS  PubMed  Google Scholar 

  39. Zhang FL, Cao JL, Xie HY, Sun R, Yang LF, Shao ZM, Li DQ. Cancer-associated MORC2-mutant M276I regulates an hnRNPM-mediated CD44 splicing switch to promote invasion and metastasis in triple-negative breast cancer. Cancer Res. 2018;78:5780–92.

    Article  CAS  PubMed  Google Scholar 

  40. Kan Z, Ding Y, Kim J, Jung HH, Chung W, Lal S, Cho S, Fernandez-Banet J, Lee SK, Kim SW, Lee JE, Choi YL, Deng S, Kim JY, Ahn JS, Sha Y, Mu XJ, Nam JY, Im YH, Lee S, Park WY, Nam SJ, Park YH. Multi-omics profiling of younger Asian breast cancers reveals distinctive molecular signatures. Nat Commun. 2018;9:1725.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Pozniak Y, Balint-Lahat N, Rudolph JD, Lindskog C, Katzir R, Avivi C, Pontén F, Ruppin E, Barshack I, Geiger T. System-wide clinical proteomics of breast cancer reveals global remodeling of tissue homeostasis. Cell Syst. 2016;2:172–84.

    Article  CAS  PubMed  Google Scholar 

  42. Zhang J, Yang Y, Dong Y, Liu C. Microrchidia family C-type zinc finger 2 promotes the proliferation, invasion, migration and epithelial-mesenchymal transition of glioma by regulating PTEN/PI3K/AKT signaling via binding to N-myc downstream regulated gene 1 promoter. Int J Mol Med. 2021. https://doi.org/10.3892/ijmm.2021.5071.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Su Y, Yu T, Wang Y, Huang X, Wei X. Circular RNA circDNM3OS: functions as a miR-145–5p sponge to accelerate cholangiocarcinoma growth and glutamine metabolism by upregulating MORC2. Onco Targets Ther. 2021;14:1117–29.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Popolo A, Pinto A, Daglia M, Nabavi SF, Farooqi AA, Rastrelli L. Two likely targets for the anti-cancer effect of indole derivatives from cruciferous vegetables: PI3K/Akt/mTOR signalling pathway and the aryl hydrocarbon receptor. Semin Cancer Biol. 2017;46:132–7.

    Article  CAS  PubMed  Google Scholar 

  45. Dai H, Deng HB, Wang YH, Guo JJ. Resveratrol inhibits the growth of gastric cancer via the Wnt/β-catenin pathway. Oncol Lett. 2018;16:1579–83.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are thankful to IISER Tirupati for providing the financial support. RKG is thankful to DBT for awarding SRF and providing the financial support.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

HSS, RKG, JPJ, KKP, PK, and SBP performed experiments and analyzed data. SBP supervised the entire project, and designed the experiments. HSS, RKG, and SBP wrote the paper. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Suresh B. Pakala.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saroha, H.S., Kumar Guddeti, R., Jacob, J.P. et al. MORC2/β-catenin signaling axis promotes proliferation and migration of breast cancer cells. Med Oncol 39, 135 (2022). https://doi.org/10.1007/s12032-022-01728-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-022-01728-6

Keywords

Navigation