Skip to main content

Advertisement

Log in

The role of various interleukins in acute myeloid leukemia

  • Review Article
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Interleukins are signaling molecules involved in the immune system, and they play a variety of roles in different diseases and cancers. Acute myeloid leukemia (AML) is the most common type of leukemia in adults, and survival rate after diagnosis is very low. Investigating the role interleukins play in AML can help understand the progression of the disease. There exists a need for more effective treatment of AML. Interleukins can be used to guide immunotherapy for AML. This review article will examine how specific interleukins play a role in AML disease progression and how they can be utilized as a future treatment option.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Elmslie RE, Dow SW, Ogilvie GK. Interleukins: biological properties and therapeutic potential. J Vet Intern Med. 1991;5(5):283–93. https://doi.org/10.1111/j.1939-1676.1991.tb03135.x.

    Article  CAS  PubMed  Google Scholar 

  2. Davis MR, Zhu Z, Hansen DM, Bai Q, Fang Y. The role of IL-21 in immunity and cancer. Cancer Lett. 2015;358(2):107–14. https://doi.org/10.1016/j.canlet.2014.12.047.

    Article  CAS  PubMed  Google Scholar 

  3. Mannino MH, Zhu Z, Xiao H, Bai Q, Wakefield MR, Fang Y. The paradoxical role of IL-10 in immunity and cancer. Cancer Lett. 2015;367(2):103–7. https://doi.org/10.1016/j.canlet.2015.07.009.

    Article  CAS  PubMed  Google Scholar 

  4. Dmitrieva O, Shilovskiy I, Khaitov M, Grivennikov S. Interleukins 1 and 6 as main mediators of inflammation and cancer. Biochem Mosc. 2016;81(2):80–90.

    Article  CAS  Google Scholar 

  5. Setrerrahmane S, Xu H. Tumor-related interleukins: old validated targets for new anti-cancer drug development. Mol Cancer. 2017;16(1):153. https://doi.org/10.1186/s12943-017-0721-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Davis AS, Viera AJ, Mead MD. Leukemia: an overview for primary care. Am Fam Physician. 2014;89(9):731–8.

    PubMed  Google Scholar 

  7. Ratnam KV, Khor CJ, Su WP. Leukemia cutis. Dermatol Clin. 1994;12(2):419–31.

    Article  CAS  Google Scholar 

  8. Imai K. Acute lymphoblastic leukemia: pathophysiology and current therapy. Rinsho Ketsueki. 2017;58(5):460–70. https://doi.org/10.11406/rinketsu.58.460.

    Article  PubMed  Google Scholar 

  9. Stanulla M, Cave H, Moorman AV. IKZF1 deletions in pediatric acute lymphoblastic leukemia: still a poor prognostic marker? Blood. 2020;135(4):252–60. https://doi.org/10.1182/blood.2019000813.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. De Kouchkovsky I, Abdul-Hay M. Acute myeloid leukemia: a comprehensive review and 2016 update. Blood Cancer J. 2016;6(7):e441. https://doi.org/10.1038/bcj.2016.50.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Deschler B, Lubbert M. Acute myeloid leukemia: epidemiology and etiology. Cancer. 2006;107(9):2099–107. https://doi.org/10.1002/cncr.22233.

    Article  PubMed  Google Scholar 

  12. Prada-Arismendy J, Arroyave JC, Rothlisberger S. Molecular biomarkers in acute myeloid leukemia. Blood Rev. 2017;31(1):63–76. https://doi.org/10.1016/j.blre.2016.08.005.

    Article  CAS  PubMed  Google Scholar 

  13. Döhner H, Weisdorf DJ, Bloomfield CD. Acute myeloid leukemia. N Engl J Med. 2015;373(12):1136–52.

    Article  Google Scholar 

  14. Martner A, Thoren FB, Aurelius J, Soderholm J, Brune M, Hellstrand K. Immunotherapy with histamine dihydrochloride for the prevention of relapse in acute myeloid leukemia. Expert Rev Hematol. 2010;3(4):381–91. https://doi.org/10.1586/ehm.10.30.

    Article  CAS  PubMed  Google Scholar 

  15. Fei C, Yao XM, Sun Y, Gu XZ, Yu LQ, Lai X. Interleukin-10 polymorphisms associated with susceptibility to acute myeloid leukemia. Genet Mol Res. 2015;14(1):925–30. https://doi.org/10.4238/2015.February.2.15.

    Article  CAS  PubMed  Google Scholar 

  16. Tao Q, Pan Y, Wang Y, Wang H, Xiong S, Li Q, et al. Regulatory T cells-derived IL-35 promotes the growth of adult acute myeloid leukemia blasts. Int J Cancer. 2015;137(10):2384–93. https://doi.org/10.1002/ijc.29563.

    Article  CAS  PubMed  Google Scholar 

  17. Nakase K, Kita K, Katayama N. IL-2/IL-3 interplay mediates growth of CD25 positive acute myeloid leukemia cells. Med Hypotheses. 2018;115:5–7. https://doi.org/10.1016/j.mehy.2018.03.007.

    Article  CAS  PubMed  Google Scholar 

  18. Cozzolino F, Rubartelli A, Aldinucci D, Sitia R, Torcia M, Shaw A, et al. Interleukin 1 as an autocrine growth factor for acute myeloid leukemia cells. Proc Natl Acad Sci. 1989;86(7):2369–73.

    Article  CAS  Google Scholar 

  19. Vijay V, Miller R, Vue GS, Pezeshkian MB, Maywood M, Ast AM, et al. Interleukin-8 blockade prevents activated endothelial cell mediated proliferation and chemoresistance of acute myeloid leukemia. Leuk Res. 2019;84:106180. https://doi.org/10.1016/j.leukres.2019.106180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nishioka C, Ikezoe T, Pan B, Xu K, Yokoyama A. Micro RNA-9 plays a role in interleukin-10-mediated expression of E-cadherin in acute myelogenous leukemia cells. Cancer Sci. 2017;108(4):685–95.

    Article  CAS  Google Scholar 

  21. Ferretti E, Di Carlo E, Cocco C, Ribatti D, Sorrentino C, Ognio E, et al. Direct inhibition of human acute myeloid leukemia cell growth by IL-12. Immunol Lett. 2010;133(2):99–105. https://doi.org/10.1016/j.imlet.2010.08.002.

    Article  CAS  PubMed  Google Scholar 

  22. Wróbel T, Gębura K, Wysoczańska B, Jaźwiec B, Dobrzyńska O, Mazur G, et al. IL-17F gene polymorphism is associated with susceptibility to acute myeloid leukemia. J Cancer Res Clin Oncol. 2014;140(9):1551–5.

    Article  Google Scholar 

  23. Han Y, Ye A, Bi L, Wu J, Yu K, Zhang S. Th17 cells and interleukin-17 increase with poor prognosis in patients with acute myeloid leukemia. Cancer Sci. 2014;105(8):933–42. https://doi.org/10.1111/cas.12459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang J, Tao Q, Wang H, Wang Z, Wu F, Pan Y, et al. Elevated IL-35 in bone marrow of the patients with acute myeloid leukemia. Hum Immunol. 2015;76(9):681–6. https://doi.org/10.1016/j.humimm.2015.09.020.

    Article  CAS  PubMed  Google Scholar 

  25. Huang J, Liu Y, Au BC, Barber DL, Arruda A, Schambach A, et al. Preclinical validation: LV/IL-12 transduction of patient leukemia cells for immunotherapy of AML. Mol Ther Methods Clin Dev. 2016;3:16074. https://doi.org/10.1038/mtm.2016.74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gutierrez A, Kentsis A. Acute myeloid/T-lymphoblastic leukaemia (AMTL): a distinct category of acute leukaemias with common pathogenesis in need of improved therapy. Br J Haematol. 2018;180(6):919–24. https://doi.org/10.1111/bjh.15129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Xu DH, Zhu Z, Xiao H, Wakefield MR, Bai Q, Nicholl MB, et al. Unveil the mysterious mask of cytokine-based immunotherapy for melanoma. Cancer Lett. 2017;394:43–51.

    Article  CAS  Google Scholar 

  28. Sim GC, Radvanyi L. The IL-2 cytokine family in cancer immunotherapy. Cytokine Growth Factor Rev. 2014;25(4):377–90. https://doi.org/10.1016/j.cytogfr.2014.07.018.

    Article  CAS  PubMed  Google Scholar 

  29. Wrangle JM, Patterson A, Johnson CB, Neitzke DJ, Mehrotra S, Denlinger CE, et al. IL-2 and beyond in cancer immunotherapy. J Interferon Cytokine Res. 2018;38(2):45–68. https://doi.org/10.1089/jir.2017.0101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Berraondo P, Etxeberria I, Ponz-Sarvise M, Melero I. Revisiting interleukin-12 as a cancer immunotherapy agent. Clin Cancer Res. 2018;24(12):2716–8.

    Article  CAS  Google Scholar 

  31. Anestakis D, Petanidis S, Kalyvas S, Nday CM, Tsave O, Kioseoglou E, et al. Mechanisms and αpplications of ιnterleukins in cancer immunotherapy. Int J Mol Sci. 2015;16(1):1691–710.

    Article  CAS  Google Scholar 

  32. Kampan NC, Xiang SD, McNally OM, Stephens AN, Quinn MA, Plebanski M. Immunotherapeutic interleukin-6 or interleukin-6 receptor blockade in cancer: challenges and opportunities. Curr Med Chem. 2018;25(36):4785–806. https://doi.org/10.2174/0929867324666170712160621.

    Article  CAS  PubMed  Google Scholar 

  33. Romee R, Rosario M, Berrien-Elliott MM, Wagner JA, Jewell BA, Schappe T, et al. Cytokine-induced memory-like natural killer cells exhibit enhanced responses against myeloid leukemia. Sci Transl Med. 2016;8(357):357123. https://doi.org/10.1126/scitranslmed.aaf2341.

    Article  CAS  Google Scholar 

  34. Van Acker HH, Anguille S, De Reu H, Berneman ZN, Smits EL, Van Tendeloo VF. Interleukin-15-cultured dendritic cells enhance anti-tumor gamma delta T cell functions through IL-15 secretion. Front Immunol. 2018;9:658.

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the Grant of IOER 112-3749 for Yujiang Fang.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yujiang Fang.

Ethics declarations

Conflict of interest

The authors have nothing to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaser, E.C., Zhao, L., D’mello, K.P. et al. The role of various interleukins in acute myeloid leukemia. Med Oncol 38, 55 (2021). https://doi.org/10.1007/s12032-021-01498-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-021-01498-7

Keywords

Navigation